4.3 PT1: First order lag (single capacity)

This is a so-called singlmpacity element because a single capacity process betiases
way; see the examples in this section.

Note: Non-linearly behaving capacity elements are also modeled with PT1. In those
cases linearization isapplied around a wor king point, asis demonstrated in the
examples of liquid level with free outflow and general order chemical reactor.
4.3.1 General properties

Its equation:

dy(t) _
T2y = A

Its two parameters are the gain A and the timetanoh®r delay T. As it is derived in
section 2.5.1, its transfer function is

G(s)=—A

TS +1

4.3.1.1 Response functions of PT1
Its impulse response can be derived by first comguhe Laplacian answer:
A - AD

Y(S):G(S)D((S):TB+1 T+

t _t
Its inverse Laplacian isj(t) = A?Bi e 7, thusy(t) =y, +A?Bi e 7.

Its step response for step a is derived in se@idnUsing the transfer function as starting
point and input functiorx(t) =a:
A Bé Al

Y(s) = G(s) X(s)

TR s (TE+1)3

t

t t
Its inverse Laplacian isy(t) = A & EE1 -e TJ ,thusy(t)=y, +A& EE1 -e TJ

In the same way, for a rump input with slope a,x@) =alt:

t
Its inverse Laplacian isy(t) = A (& DEt -T [€1 -eT D

At high t values this answer fits asymptoticallyytt) = A (a [{t — T), this is why
the time parameter T is also calkiche delay.
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The response functions are shown below.
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Response functions of PT1

4.3.1.2 Frequency function of PT1
o)== A - Al(1-Tlilew)  _Al(1-Tlila)
Titw)+1 (1+TO)M{I-TOM)  1+T* @/

1 T
=A -i
E€1+T2D'u2 1+T2D2)2J

Bl =Wy BT =
_ T

¢(w) = arctan M = arctan(- T [w) = —arctan(T [w)
T

The phase angle at=0 starts at 0 and monotonically decreases witteasingw, but
never goes below90.° The Nyquist plot is a curve starting from [A,O]dagoing toward
[0,0] in the first negative quadrant:
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Nyquist plot of PT1
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For drawing the Bode plot, take into account that
1
lg|g(w) = g|A| —Elg(1 + T2 B’uz)
At low w frequencies the term” &/ is negligible in the bracket, whereas at high
frequencies the unity is negligible in the bracHdterefore
at low frequenciesg|g(w) = g|A|, and
at high frequenciess|g(w) = g|A| -1g T -lgw

Hence at low frequencies the curve asymptoticaiytd a horizontal line whereas at
high frequencies it asymptotically fits to a sttgigne with slope-1. The two asymptotic

straight lines intersect at a frequenoy % (This is calledcorner frequency.) Note

that the frequencyo is measured in [radian/time unit] in these formsula

Thenormalized Bode plot is shown below. Normalization means: Antiw- T is used
in the horizontal axis:
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Normalized Bode plot of PT1

31



4.3.2 ldentifying PT1 from empirical data

Given the step response of a PT1 element, itsAyaen be determined from the
estimated response step at infinite time, andithe tonstant T can be computed from
any point's co-ordinates or the slope of a tantgeatto a point, according to the
analytically known answer function.

However, we cannot be sure that the actual physieatent really behaves as (i.e. can be

well approximated by) a PT1 element. This can teeked by plottingn Y= —Y/ —y(t)

_t _
against t, becausg, =A@ so thaty""—y(t) =e T and thuslny°°—y(t) = —%
Yo Yo

straight line in t with slope%.

The unit behaves as a PT1 element if the plotpsaimately a straight line, and the
time constant can be determined by fitting a shiglige to the plot and reading its slope:

r.

- v(t)] A
L ,v(t )

]1(1—_.._1-
BT

Identification of PT1

4.3.3 Example: Stirred tank

The stirred tank in the example serves as a coratent buffer. Liquid solution flows
through a tank so that the liquid level in the tesxkomehow kept constant and thus the
volume V of the liquid momentarily contained in Wessel is also constant. As a result,
the momentary flow rate w leaving the vessel isagsvequal to the flow rate entering the
vessel. The liquid consists of a solvent and atsollhe concentration,f the solute in
the incoming flow is subject to change in time, #&mas the average concentration of the
solute in the vessel at any moment is also subjedhange. The vessel is perfectly mixed
so that the concentration in any point of the Viessthe same, and equal to the average,
and the concentrationgin the effluent stream in any moment is the sasia ghe

vessel.

Suppose, for the sake of simplicity, that the fl@ate w is constant. Suppose, as well, that
there is an initial steady state characterizedanyesg,=Co=Coy: CONcentration. How does
the outlet concentration,g change in time if the inlet concentrationehanges? The
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inlet concentration can change according to anirary (but non-negative and finite)

function of time.
W, Cpe (D) ’ '

—

In order to find a proper answer, consider a dycdmlance of the solute around the
vessel:

W (1) = w (0 v o)

The balance says: What comes into the vesseh@eid side) is equal to a sum of two
parts: that part which flows out from the vesset] another part which increments the
amount accumulated in the vessel. (This secondcparbe zero or negative, as well.)

By rearranging of the equation, we obtain the garferm of a first order lag:

V _dc,,.(t _
Vil ()=, 1)

Here ¢, (t) is the input signal, and,(t) is the output signal of the element. The time
constant isT = Al , the average residence time of the fluid parti¢yes can check its
w

dimension is time), and the gainAs=1 concentration/concentration, i.e. dimensionless).

In order to apply this model properly, we have $e deviation variables
&in(t) =c;,(t)-c, and &, (t) = c . (t) - ¢, - By introducing them to the equation, we get

\J (Co +diout (t)) + (Co +8o (t)) = (Co +C;, (t))

i.e.

Theequation for the deviation variablesisthe sameasthat for the original ones.
Thisisgenerally truefor linear forms.

After Laplace transformation we gé/t [, (s) 3 +C,.(s) = C,,(s) where capitals are used
W

for the Laplacians. Thus the transfer function fremo Gt is
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1 1

(V)BH T3+1
w

G(s) =

whereris the residence time of the liquid in the vessel.

For example, if g changes by a sudden step fragmp to g, then the response function
is

6ult) =10, ~ o) J1-e 7o

and the measured output concentration changes acgdadihe following function:
t

ou(t) = 6o + (0.~ o) 1€ %o

4.3.4 Example: Thermometer

Consider a mercury thermometer submerging in a fluiémperature . Denote the
temperature of (and shown by) the thermometer§ySTlippose that the heat transfer
coefficient between the fluid and the thermometét,iand the heat transfer area (of the
mercury jacket) is B. Let the heat capacity C oftttermometer is as small as to be
negligible comparing it to the heat capacity of filued.

Suppose that initially the system was in steady stateraé equilibrium temperature
Te=To=Tw, and then Fis changed. How will  change? We are looking for the answer
with any arbitrary change of=T

The dynamic heat balance of the thermometer cawritien as

U B {1y (1)~ To () = ¢ 1Y

Here the left hand side tells how much heat is talebyuthe thermometer in a unit time,
whereas the right hand side counts the increasg at & result of taking up that heat.

Now the input signal is g and the output signal is,T The equation is rearranged:

peesr LINORAY

This is the equation of a first order lag with gainlAfemperature/temperature, i.e.

dimensionless) and time constant ﬁ.

We have to consider deviation variables, but the fofthe equation does not change.
1

G(s)= ————
(U?B)BH
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If the temperature of the fluid changes with a tantsslope K degree/time_unit (a ramp
function), for example, then the measured tempezatill be

C _@[ﬂ
Tot)=Ty +1KDt-——[1-e ¢
n(t) =Ty + Eﬁ UB[E e B

That is, the measured temperature will be delayed bULEB at high t.

4.3.5 Example: Steam heater

Let a stream to be heated up at a constant flaswvahrough a perfectly mixed tank of
volume V that serves as a heat exchanger withtreestfer area B. The material
properties of the fluid are its densgyand specific heat,cLet the fluid heated up by
steam of a given pressure, involving its condensaemperature J and let the overall
heat transfer coefficient be U. Denote the inletgerature by if, the outlet temperature
by Tout.

w, Tiy
_Ts | I :

— %

Suppose that there is initially a steady state déta T, o, Tso and Tuto and then some
change happens either i or in Ts, or both. How will T react?

The steady state heat balance can be written as

wlp |]:p |:ll-in (t) +UB EQTS (t) - Tout (t)) =wlp |:d:p Ijrou'c (t)
Note that, because of perfect mixing, temperatfitheeffluent stream equals the
temperature inside the vessel. The left hand sizesum of the heat content carried in by
the inlet stream and the heat transported throghvall separating the two media. This

sum must be equal to the heat content of the efflsieeam (right hand side) in steady
State.

If there is no steady state, i.e. in the genersé ¢dynamic balance), the accumulation of
heat in the vessel is also taken into account bgdalitional member:

w Op (&, [T, (t) + UB (T, (t) - Tou (t) = w Dp &, [T, (t) + VI €, BCJTZUE (t)

We may apply deviation variables and the equatambe rearranged as
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Viple T . [ R R
Pl g ()= P (g4 B
UB+wlple, dt UB+wlple, UB+wLlple,

Here there are two input signals, and the outgurtadiresponses as first order lag to both
of them.

The Laplacian form is

A A
Tout (S) = Tn EII-in (S) + L Ijl-S (S)

T3+1 TE+1
where time constant is common

_ Viplc,
" UB+wOple,
but the gains are different:

_ Wwiplc,

T UB+wpLE,
_ UB
T UB+wplk,

4.3.6 Example: Liquid level in tank with free outflow

Fluid flows in with flow rate vy to a vessel with vertical walls and constant rantal
cross section area B, and flows out from it withthr ough an open hole into a pipe.
The liquid level in the vessel is denoted by H.

wiu (8)

Thedriving force of the outflow istheweight of theliquid over the hole, i.e. the
pressure of the liquid column over the level of tiode.

(Note that this is a self-controlling process beesaihe higher level causes faster outflow,
and if the tank is high enough then there is alledere the outflow equals the inflow.)

Suppose an initial steady state is characterized/pyWo=W,.: and H=H, and then the
inlet flow rate changes arbitrarily. How will liqgilevel H change in time?

The dynamic material balance is

Wi £) = W 1)+ 821

1
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We know from physics or unit operations that théetdlow rate depends on the actual

level by a square root formula

W, =KG&H

where K is constant factor. Substitute this forntoléhe balance:

W, (t) =K C/H(t +BD(¥

then this imot a linear equation. Thus, the free outflow levelgess isot a linear unit.
In such cases, however, the process can be liegagiound a working point, which is
taken as the initial steady state. For examplediépends on x in a non-linear manner
then the linearization, according to the figureobelis

(Xo5 Yo),

e x(1)

()

d . N
y—yozﬁxo f{x = %), e. y=-—2

In our particular case we have

A

Wout = dWOUt EH:I
dH

and the linearized balance equation is

W (6) = W) e+ p £
dH o dt

By differentiation we get
dWoe = K _KOH _ Wy,

dH 203/H 2mMW 2mM

dw

out _ Wout,O

dH | 21H,

thus the linearized balance is
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Wy (6)= 3282 () + £

2H,
By rearrangement:

210, (8 280 )= 200

Wout,O dt Wout,O
This is a PT1 element with gain
A= ﬂ
Wout,O

and time constant
2[H, (B

Wout,O

T=

Note that H-B=V, the volume of the liquid in thesgel, and theltll-l\‘;\/—[B =7, the
0

residence time of the liquid in the vessel in syestdte. Thus
T=201,
and the transfer function is
2 [H,
)

(201,)5+1

G(s) =

4.3.7 Example: Stirred chemical tank reactor

Consider a perfectly stirred chemical tank rea@@8TR) with constant liquid volume V
and flow rate w.
Let the chemical reaction be of order n so thardaetion rate [mol/(volume-time)] is

r=k&". (A given component whose concentration is ¢ geafftfrom the solution. The
concentration of the reaction product is not pathe model.) Because of perfect mixing,
c inside the vessel is=c, .
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W, cpu (1) ! l ’

—

Suppose an initial steady state witly@nd .0 and then some change in ¢low will
Cout Change in time?

Before answering the question, note that«ds not independent of,@ since according
to the steady state balance

Wit o =V +Wlt,,,

Wt o= VK, o +W oo

Cino = T IK[EG, 0 * Couro
whereris the residence time.

The dynamic balance is

(t) +WIE . (t) +V Cout (t)

e, (t)=Vkep
Wi, (1) o

out
which, in general, is a non-linear equation.

4.3.7.1 First order reaction
In this case the equation is linear.

Cou(t)
t V out
out( ) + dt

After introducing the deviation variables and raagement:

wie, (t)=(Vk+w)E

Ve 0= g,
VIk+w dt VIk+w

or

Lol )=—1 2, ()
Tk +1 dt Tk +1

whereris the residence time.
Thus, this is a PT1 element with gain and timeyak
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w1

:Vljk+w Tk +1

T \" __ T
Vik+w 71k+1

4.3.7.2 General case
In the general case the reaction rate is lineadgednd the point of [goro]. (Note that
rO = k Ilgut,O)

dr
dc

— n-1
=n l:k Rout,o
0

out
Substituting this to the balance equation, applylaegiation variables and rearrangement:

\'% Efjéout (t) + & (t) = w [, (t)

\'% dr +w dt \' dr +w
dcout 0 dcout 0

r Efjéout (t) 1

+ é‘:ou t)=
dr dt (1) dr
T +1 T +1
dcout 0 dcout 0

whereris the residence time.

or

(& (t)

Thus, this is a PT1 element with gain and timeyak&

A= w = 1
v dr w7 dr 1
dcout 0 dcout 0
T= ] v = dr
\% Tl ew 7 Y
dcout 0 dcout 0

This is an approximation around the working point.

This general case incorporates the particular cbe first order reaction, and even the
case of no reaction, i.e. the mixed vessel. Tls¢ dirder case is not an approximation but
is exact because then the derivative does not depethe actual concentration.

4.4 PT2: Second order lag (double capacity)

Such adouble capacity element is formed if two first order lags are cected in a series,
but there are inherently second order lags thatatame decomposed into two single
capacities.
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4.4.1 General properties
Its equation by definition:

d’y(t) , — dy(t)
T? T t) = A [X(t
2 dtz + 1 dt +y( ) ( )

This element has three parameters: the gain Ajr8teorder time constant;fand the
second order time constant Tts transfer function is

A
Gl(s)=
() TZE2+T,3+1

but can be rewritten in the following form:

G(s) A

CTIRI42[FTE+1

where
T=T,, thetime constant of the element,

&= ZEII' , thedamping factor of the element.
2

If two first order lags are connected in seriesithlso a second order lag is formed:

G(s) = Al o A 2A1D\z
T,B+1 T,3+1 T,0,3%+(T,+T,) B3 +1

so that in this case

T=T, 0@,
f = T1 + TZ

The second order lags can be classified into tt@ses according to the valuefin all
the three cases we show the impulse response amstieih response for impulse vakue
and step value:

a. 0<&1

This is the so-called oscillating case. Such a casaot be formed by connecting two
first order lags.

We use the following derived parameters:

a= damping exponent

— [

_ g2
w= 1_|_£ oscillation frequency
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The impulse response:

y(t)=A@ GC# (™" Bin(w(1)

The step response:

y(t)=Aa EE1 —e™t Eﬁcos(a)[t) +9 Bin(w[t)D

w

. &1
This is the case when two first order lags witentical time constants T are
connected in series.

The impulse response:

|

yt) =A@ E-ITt—z ry
The step response:

j(t)= Az [€1 _eat [E1 " %D

No oscillation is here. This is the limit case beén oscillation and non-periodic
damping.

1<§

This is the case when two first order lags wdtfferent time constants ;Tand T are

connected in series. f<becauseT1;—T2 > /T, [T, always holds.

The impulse response:

_t _t
9(t)=A®E—I1—EEe T-e TZ]
T-T

The step response:

t t

N 1 T N

t)=ARO1- Le"-T,&"
y(t) T -, 1 2 H

No oscillation is here. The largérthe stronger approaching the final value.
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The impulse responses for different damping facioesshown in the next figure:
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The step responses for different damping fact@shown in the next figure:
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Using the same technique of algebra as in thedabe first order lag (section 4.3.1.2),
the frequency function can be derived:

Al
Jo-T2 P + 2T )

lg(w) =

) 2FT
#w) = arctan(—1 —5 Mj
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The phase angle at=0 starts at 0 and monotonically decreases witleagingw, but

never goes belowl80°. The Nyquist plot of several second order lagé witferent
damping factors is shown below here:
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For drawing the Bode plot, note that

at low frequenciesg(w) = A/,

. . Al

at high frequencieg(w) = | ,
gh frequenciefg(ew) = =~
Hence at low frequencies the curve asymptoticaéitytd a horizontal line whereas at

high frequencies it asymptotically fits to a sttgigne with slope-2. The Bode plot of
several second order lags with different dampirmgois are shown below:

i.e. lgg(w) = gA|-21gT-2lgw
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4.4.2 Example: U-tube manometer

Consider a U-tube manometer measuring the predgteesnce between its two open
ends:

The differential equation describing the behaviothe manometer is the following:
2
Fmp—hmgo@—Rmaj—:‘:ngoij?

where

the tube's cross section area

p:  the pressure difference

the level difference in the two arms of the nmaeter
density of the liquid in the tube

gravitation acceleration constant

total length of the liquid column in the tube
friction resistance (a lumped factor)

(R is a shorthand for

R=3200

DZ

xrex b m

where 7 dynamic viscosity

D: internal diameter of the tube)

The leftmost member expresses the driving forcewlald push the liquid column to or
back in the tube. The next member counts for tagity difference that pushes back. The
third member counts for the resistance against ngpglue to friction: this is proportional
to the velocity of the liquid in the tube. The rigtand side is a product of total liquid
mass with the acceleration of the liquid in theetudo that the whole equation stands for
Newton's low of movement.

After rearranging the equation we get

2
EBd_I;+Lch+h:me
g dt© plg dt pE

This is the equation of a second order lag witlhuirgggnalAp and output signal h, gain
A :L, and time constants, :L, T, = L .
pg o8 g
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