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14 Example calculations 

 

14.1 Problem 1: First order capacity, temperature 
Hot water is produced in an open vessel, in a continuous process, by direct steam heating. 

In the initial, steady, state the water is warmed up from T1(t=0) = 15°C to T2(t=0) = 75°C 
by mS = 30 kg/h steam. After suddenly closing the steam valve, the outlet temperature of 
the water decreases according to the following function of time: 

t [min] 0 2 4 8 12 16 20 25 30 
T2

 [oC] 75 69.5 64.6 56 48.9 43 38.1 33.2 29.4 
Consider this as a process with mS [kg/h] manipulated variable to T2

 [oC] controlled 
variable. 
 
Questions 

a. Prove that this is a first order lag. 

b. What are the dynamic parameters of this process? 

c. After reaching a new stationary state with closed steam valve, we open the valve 
again so much that the new steam flow rate is mS = 50 kg/h. How does the hot 
water temperature (T2 [

oC]) changes is time, i.e. what is the function T2(t) [
oC]? 

 
Solution 

a. Prove that this is a first order lag. 

We have to calculate logarithm of Ratio=
( ) ( )

( )∞
−∞

2

22

T̂

tT̂T̂
.  

For this aim first we need T2(t=¶). This is easily found as 15°C because this is the inlet 
temperature, and without heating it remains so. Thus T2(t=¶) = 15°C and the change is 

( ) ( ) ( )0TTT̂ 222 −∞=∞  = 15°C − 75°C = −60°C. 

In the same way, ( ) ( ) ( ) ( ) −=−= tT0TtTtT̂ 2222 75°C. 
This is how the calculation goes: 

t [min] 0 2 4 8 12 16 20 25 30 
T2

 [oC] 
(measured) 

75 69.5 64.6 56 48.9 43 38.1 33.2 29.4 

( )tT̂2 [oC] 0 -5.5 -10.4 -19 -26.1 -32 -36.9 -41.8 -45.6 

( )∞2T̂ [oC] −60 −60 −60 −60 −60 −60 −60 −60 −60 

Ratio 1 0.908 0.827 0.683 0.565 0.467 0.385 0.3037 0.24 
ln(Ratio) 0 −0.096 −0.19 −0.381 −0.571 −0.762 −0.955 −1.193 −1.427 

One can see that the points lie along a straight line but this can also be proven by 
optimally fitting a straight line to the point (regression), see the next figure. The 
correlation coefficient R is 1; that means an almost perfect fit. 
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b. What are the dynamic parameters of this process? 
This can be answered by finding the parameters of the straight line through optimal 
regression as is shown in the figure. 
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According to the fitting, the slope is −0.0476. 

According to the theory, 
( ) ( )

( )
t

T

1

T̂

tT̂T̂
ln

2

22 ⋅−=
∞
−∞

 where T is the time constant. From here 

the time constant T=1/0.0476=21 minutes. 
The gain can be determined from a step response. Such a step disturbance was closing the 
valve: with a step value a=−30 kg/h. As a result, the final change in T2 was A·a=−60°C. 
From here the process gain is A=−60°C/−30 kg/h = 2°C/(kg/h). 
 

c. After reaching a new stationary state with closed steam valve we open the valve again 
so much that the new steam flow rate is mS = 50 kg/h. How does the hot water 
temperature (T2 [

oC]) changes is time, i.e. what is the function T2(t) [
oC]? 

In the new steady state before opening the valve T2(0) = 15°C. A step disturbance is 
applied to the steam mass flow rate, a = 50 kg/h. The step response of a first order lag: 

( )











−⋅⋅=

−
T

t

2 e1AatT̂ ,  ( ) ( )











−⋅⋅+=

−
T

t

22 e1Aa0TtT  

( )







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
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−⋅°+°=









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
−⋅°⋅+°=

−−
min21

t

min21

t

2 e1C100C15e1

h
kg

C
2

h

kg
50C15tT  

However, this function is valid under the boiling point only, i.e. up to 100°C, after that 
point the temperature does not increase but the water boils. For calculating the time of 
reaching this temperature we substitute: 












−⋅°+°=°

−
min21

t

e1C100C15C100 , and from here: t=39.8 min. 

That is, the function above is valid up to 39.8 min, and then it remains 100°C. 
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14.2 Problem 2: Capacities, heating, thermometer 
Ww=500 l/h hot water is produced continuously in a perfectly mixed vessel by direct 
steam heating. In the initial, steady, state the water is warmed up from ϑw(t=0) = 20°C to 
ϑV(t=0) = 85°C and the steam flow rate is mS = 60 kg/h.  
Heat capacity of the vessel (of the process material resided in the vessel) is CV=450 kJ/°C. 
The latent heat of the steam may be approximated as λS=2300 kJ/kg (independent of the 
actual pressure), and the water's specific heat may be taken as cp,w=4.18 kJ/(kg°C) 
(independent of the actual temperature). 
The temperature in the vessel is measured by a mercury thermometer, its time constant is 
TTh = 3 min. 
Due to some failure in the steam line, 2 kg steam enters the vessel during negligible time. 
 
Questions 

a. What is the function ϑV(t) [oC]? 

b. What is the function ϑTh(t) [
oC]? 

c. What is the highest temperature shown by the thermometer? 
 
Solution 

a. What is the function ϑV(t) [oC]? 
The vessel is a first order element with the following gain and time constant: 

h
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The sudden entering extra steam is an impulse disturbance a=2 kg. 
The response of the first order lag to the impulse is 

( ) VT

t

V

V
V e

T

Aa
tˆ

−
⋅⋅=ϑ  

( ) ( ) h215.0

]h[t
T

t

V

V
VV e

0.215h
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⋅

°⋅

+°=⋅⋅+= ϑϑ  

( ) min2.91

[min]t

h215.0

]h[t

V eC10.23C85eC10.23C85t
−−

⋅°+°=⋅°+°=ϑ  
(The impulse response is that the temperature suddenly jumps up to a maximum and then 
gradually decreases.) The maximum value is C95.23eC10.23C85 0

max,V °=⋅°+°= −ϑ . 
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b. What is the function ϑTh(t) [
oC]? 

Both the vessel and the thermometer are first order lags. Gain of the thermometer is 
ATh=1 [°C/°C], its time constant TTh is given. 
The series of two first order lags is a second order lag. Its gain is the product of the two 
first order gains. Since the time constants of the two first order lags are different, the 
damping factor ξ>1, thus the impulse response is 
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In the initial steady state the thermometer shows the temperature of the vessel: 
ϑTh(0) = 85°C. 
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c. What is the highest temperature shown by the thermometer? 
The impulse response of the second order lag has a maximum. This maximum is at the 
time where this function's derivative is zero. First we determine the place of the 
maximum: 

( )
0
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−
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Then the maximum can be calculated by substituting this time moment: 

( ) C58.91eeC13.33C85t min3
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14.3 Problem 3: Capacities, 2nd order reaction 
W=80 l/h solution is made in the first perfectly mixed tank of volume VT=25 liter from 
(W=80 l/h) solvent and n(0)=0.5 kmol/h chemical 'Z'. The solution is warmed up and fed 
to a second, again perfectly mixed, isotherm tank reactor of volume VR=50 liter, where 
chemical 'Z' reacts away in a chemical reaction of order 2. 

C C

C C

0 1

1 2

 
In the initial steady state the concentration of 'Z' in the stream leaving the reactor is 
c2(0)=1.5 kmol/m3. 
The flow rate of chemical 'Z' is suddenly lifted up from n(0)=0.5 kmol/h to n=0.65kmol/h. 
 
Question 

What is function c2(t), i.e. how the concentration of 'Z' in the stream leaving the 
reactor will change in time, and what will be its value at 25 min after the step 
disturbance? 

 
Solution 
Concentration c0 of 'Z' in the feed stream in the steady state can be calculated directly: 

( )
33

0
0

m

kmol
6.25

h

m
0.08

h

kmol
0.5

W

)0(n
0c ===  

We have a second order lag built up from two first order capacities. First we determine 
their parameters. 
Solver tank 

The solver tank does not do anything else than homogenizes the stream, thus its 
gain is 

1A T =  
Its time constant is 

0.313h

h

l
80

25l

W

V
T T

T ===  

Reactor 
The solver tank does not do anything else than homogenizes the stream, i.e.  

( ) ( )
301

m

kmol
6.250c0c ==  
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Having this and the given c2(0), we can calculate the reaction rate from the 
material balance in the steady state:  

( ) ( ) ( )0rV0cW0cW R21 ⋅+⋅=⋅  

where r is reaction rate. 
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Now we can calculate the reaction rate coefficient k. We have a second order 
reaction, thus ( ) ( )[ ]22 0ck0r ⋅= , and  
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In order to calculate the gain and the time constant of the reactor, we need the 
derivative in the working point: 
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In order to calculate the response function, we have to calculate first the disturbance in c0.  
As a result of increasing the chemical flow rate from n0 to n, the new concentration is 
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Thus the step increase in c0 is  
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m
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We have a pair of first order lags with different time constants, thus the damping factor 
ξ>1, and the step response is 
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25 min is approximately 0.417 h, thus 
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14.4 Problem 4: Valve 
50 m3/h cooling water is needed in a heat exchanger, according to process design. With 
such a flow rate, the resistance against the flow in the heat exchanger and the pipeline is 
2 bar. For controlling the flow rate, a control valve of exponential characteristic (with 
n=3) and throughput number kv,max= 50 m3/h is built in. The cooling water is circulated 
by a pump that provides with 4 bar constant pressure. 
 
Questions 

a. What is the valve position (how much is the valve open) at the following flow 
rates? 

- 30 m3/h 

- 50 m3/h 

- 60 m3/h 

b. What is the maximum possible flow rate? 
 
Solution 

a. What is the valve position (how much is the valve open) at the following flow rates? 
The pressure drop is quadratic in the flow rate: 
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Relative density of water: ρrel = 1. 

 
30 m3/h 

Pressure drop on the heat exchanger and the pipeline at this flow rate: 
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Pressure drop on the valve is the complementary: 
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Maximum flow rate at this pressure drop on the valve: 
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The relation between W, Wmax, and valve position (openness) h: 
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That is, at W=30 m3/h the valve is open to 63.2 %. 

 
50 m3/h 

Pressure drop on the heat exchanger and the pipeline at this flow rate: 
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Pressure drop on the valve is the complementary: 
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Maximum flow rate at this pressure drop on the valve: 
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The relation between W, Wmax, and valve position (openness) h: 
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That is, at W=50 m3/h the valve is open to 88.4 %. 

 
50 m3/h 

Pressure drop on the heat exchanger and the pipeline at this flow rate: 
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Pressure drop on the valve is the complementary: 
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Maximum flow rate at this pressure drop on the valve: 
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This maximum flow rate is smaller than the assumed 60 m3/h, and the actual flow 
rate can be smaller only. Therefore 60 m3/h cannot be reached. 

 

b. What is the maximum possible flow rate? 
The valve formula is 
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The maximum possible flow rate is available at maximum opening, i.e. no characteristic 
is needed to calculate. In that case, however, Wmax takes place at both sides of the 
formula: 
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Thus the maximum possible flow rate is 

h

m
57.74

1bar

h
m

bar
108

h

m
50

1

1bar

4bar

bar1

K

k

bar1

p

W
3

23

4

23

2
max,v

rel

total

*
max =







⋅

+










=
+

∆

=
−ρ  

 
 
 
 
 
 
 
 



 103

14.5 Problem 5: Valve 
Water flows in a long pipe, driven by constant 2 bar. An exponential characteristic (with 
n=3) and throughput number kv,max= 50 m3/h control valve is built in the pipe. At 40% 
opening the flow rate is 8.3 m3/h. 
 
Questions 

a. What is the valve position at 10 m3/h? 

b. What is the valve position at 12 m3/h? 
 
Solution 
For answering, we need to know how the pressure drop over the pipe depends on the flow 
rate. As the only known flow rate belongs to a partial opening, we have to take into 
account the characteristic as well. 
For this aim, we first calculate the maximum flow rate Wmax at 40% opening (h=0.4) 
when the flow rate W=8.3 m3/h: 

hn

n
max

e
e

1

W

W ⋅⋅=  

4.03

3
max

3

e
e

1

W
h

m
3.8

⋅⋅=  

h

m
21.50W

3

max =  

Now we can calculate the pressure drop on the valve from the valve formula: 
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max,vmax

p
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ρ
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1

p
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m
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h
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21.50 rel

33 ∆⋅=  

1prel ≈∆  

1barbar1pp relvalve =⋅∆=∆  
We can now calculate the pressure drop over the pipe, and then characterize the pipe 
resistance: 

1bar1bar2barppp valvetotalpipe =−=∆−∆=∆  

2
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a. What is the valve position at 10 m3/h? 

1.45bar
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m
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h
m
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101.45WKp
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

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
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0.55bar1.45bar2barppp pipetotalvalve =−=∆−∆=∆  
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h

m
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h
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33
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33
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e
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h
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h

m
10
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563.0h =  
The valve is open to 56.3%. 
 

b. What is the valve position at 12 m3/h? 

2.09bar
h

m
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h
m

bar
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





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
⋅







⋅=⋅=∆ −  

This, however, is larger than the total 2 bar, thus 12 m3/h cannot be achived 
with any large valve. This is over the limit of the pipeline and pump system 
itself. 

The absolute limit, considering an infinite large valve, is as follows: 

2
pipe WKp ⋅=∆  

K

p
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h
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⋅
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14.6 Problem 6: Level control loop 
Level is controlled in a vertical cylindrical water tank of diameter D=3 m. Domain of the 
transmitter is 0.6 m wide. The transmitter is of linear characteristic. The outlet stream is 
transported by a pump that provides with 0.5 bar pressure difference independently of the 
flow rate. A linear working characteristic control valve with throughput number 
kv,max= 25 m3/h is built in the outlet pipe. The outlet pipe is wide, its resistance may be 
neglected.  
A P-controller is used with gain AC=20. 

In the initial steady state the level is 1.25 m, the water flow rate is 10 m3/h. 
 
Questions 

a. In what range of the flow rate can the level be kept constant? 

b. In what range will the level change? 
 
Solution 
 

a. In what range of the flow rate can the level be kept constant? 
The lowest flow rate is, naturally, 0 m3/h. In such a case the valve closes full, and the 
level remains. 
It is just the valve that limits the flow rate from above, because the pipe itself has no 
resistance. The limit is the maximum flow rate the valve can let through. 

5.0
1bar

0.5bar

1bar

p

1bar

p
p

pumpvalve
rel ==

∆
=∆=∆  

h

m
17.68

1

0.5

h

m
25

p
kW

33

rel

rel
max,vmax =⋅=∆⋅=

ρ
 

Thus, Wœ[0 m3/h to 17.68 m3/h]. 
 

b. In what range will the level change? 
For answering this question, we need the transfer function from the (inlet) flow rate 
(disturbance) to the level (controlled variable) taking into account the effects of the 
control loop. For this, we need the transfer function of all the elements in the loop: the 
process, the transmitter, the controller, and the actuator. 

( ) ( )
( )

( )
( ) ( ) ( ) ( )sGsGsGsG1

sG

sW

sL
sG

AcCTrPr

Pr*

⋅⋅⋅+
==  

Process 
The process is a tank level with forced outflow, thus an integrating element: 

( )
s

A
sG Pr

Pr =  

Its gain is: 
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( ) 222Pr
m

1
14.0

4

m3

1

4

D

1

B

1
A ====

ππ
 

Transmitter 
We have a linear transmitter, its model is a proportional element: 

( ) TrTr AsG =  

The transmitter measures the level L in a range of L0 to L1 in a way that L0−L1 is 
0.6 m. Let xc denote the location in this range, and let xe denote the control signal 
between 0 and 100%. Then the characteristic is a straight line according to the 
figure below. 

0

100

0 0,6

xe [%]

xc [m]

 
The transmitter gain is the slope of this straight line: 

m

%
166.67

0m0.6m

0%100%
A Tr =

−
−=  

Controller 
We have a P controller with given gain: 

( ) 20AsG CC ==  
Actuator 

We have a linear valve (linear working characteristic), its model is a proportional 
element: 

( ) AcAc AsG =  
The flow rate changes 0 m3/h to 17.68 m3/h as a result of the command changing 
0 to 100%, thus the gain is 

%
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m
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0%100%
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Resultant transfer function 
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⋅⋅⋅+
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( )
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⋅⋅⋅

⋅⋅=  

 
This is a first order lag with parameters: 
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Step disturbance from steady state to minimum flow rate 

( )
h

m
10

h

m
10

h

m
00WWa

333

new −=−=−=  

( ) 0.017m

h
m

m
101.7

h

m
10AaL̂

3

3
3

* −=⋅⋅−=⋅=∞ −  

( ) ( ) ( ) 1.233m0.017m1.25mL̂0LL =−=∞+=∞  

 
Step disturbance from steady state to maximum flow rate 

( )
h

m
68.7

h

m
10

h

m
68.170WWa

333

new =−=−=  

( ) 0.013m

h
m

m
101.7

h

m
7.68AaL̂

3

3
3

* =⋅⋅=⋅=∞ −  

( ) ( ) ( ) 1.263m0.013m1.25mL̂0LL =+=∞+=∞  
 
Thus the level will change from 1.233 m to 1.263 m, in a range of 3 cm only. 
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14.7 Problem 7: Level control loop 
A 2 m high vertical water tank of horizontal cross section area B=4.5 m2 is used for 
balancing flow rate fluctuations. The outlet stream is transported by a pump that provides 
some pressure difference independently of the flow rate. 
Additional elements of the control loop are: 

- Transmitter, linear, domain length 3 m  

- P controller, gain AC=1.2 

- Valve, exponential basic characteristic, approximately linear working 
characteristic in the command domain 15% to 58%, letting through 3 – 15 m3/h in 
this domain. 

In a steady state the flow rate is 3 m3/h and the level is 0.25 m. 
The level should be constrained inside the interval 0.25 m to 1.75 m. 
 
Questions 

a. What minimum and maximum inlet flow rate may be permitted? 

b. What can be the minimum and the maximum outlet flow rate? 

c. What is the time constant of the loop? 
 
Solution 

a. What minimum and maximum inlet flow rate may be permitted? 
Only such flow rate is permitted at which the level remains in the specified interval 
0.25 m to 1.75 m. Starting from a known steady state we are looking for a step 
disturbance that pushes the level to the limit. 
For this aim first the gain of the loop from the inlet flow rate to the level is 
determined. 

( ) ( )
( )

( )
( ) ( ) ( ) ( )sGsGsGsG1
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sW

sL
sG

AcCTrPr

Pr
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*

⋅⋅⋅+
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We need the transfer function of all the elements in the loop: the process, the 
transmitter, the controller, and the actuator. 
Process 

The process is a tank level with forced outflow, thus an integrating element: 

( )
s

A
sG Pr

Pr =  

Its gain is: 

22Pr
m

1
22.0

m5.4

1

B

1
A ===  

Transmitter 
We have a linear transmitter, its model is a proportional element: 

( ) TrTr AsG =  
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m

%
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0m3m

0%100%
A Tr =

−
−=  

Controller 
We have a P controller with given gain: 

( ) 2.1AsG CC ==  
Actuator 

The valve is of linear working characteristic, its model is a proportional element: 

( ) AcAc AsG =  
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Resultant transfer function 
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Step disturbance from steady state 
Step down: The steady state is just at the lower limit of both the level and the flow 
rate working domain of the valve, therefore the lower limit is 3 m3/h (no step 
down). 
Step up: 

h
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The inlet flow rate domain is 3 m3/h to 13.27 m3/h. 

b. What can be the minimum and the maximum outlet flow rate? 
Since in steady state the inlet and the outlet are equal, this is the same as for the inlet: 
3 m3/h to 13.27 m3/h. 
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c. What is the time constant of the loop? 

min9.93h665.0
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14.8 Problem 8: Level control loop 
A vertical water tank of diameter D=2.5 m is used for balancing flow rate fluctuations. 
The outlet stream is transported by a pump that provides 2 bar pressure difference 
independently of the flow rate. Resistance of the pipe may be neglected. The control 
valve is of linear working characteristic, kv,max = 12 m3/h. The transmitter domain is 
2.5 m wide, its center (50 % control signal) is set to level 1.5 m. The set point signal is 
such that at level 0.5 m the valve is open to 10 %.  
Our target is to keep the level in 0.5 m to 2.5 m in a way that the valve is open in a range 
10 % to 90 %. 
 
Questions 

a. What should be the controller gain? 

b. What is the flow rate if the level is 1.5 m in steady state? 

c. From the steady state of question b, another input pipe is suddenly open, and a 
new stream starts with either (c1) 5 m3/h or (c2) 10 m3/h. How does the level 
change in time in both cases? 

 
Solution 

a. What should be the controller gain? 
For this aim first the gain of the loop from the inlet flow rate to the level is to be 
determined. 
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We need the transfer function of all the elements in the loop: the process, the 
transmitter, the controller, and the actuator. 
Process 

The process is a tank level with forced outflow, thus an integrating element: 
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A
sG Pr

Pr =  

Its gain is: 
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Transmitter 
We have a linear transmitter, its model is a proportional element: 
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( ) TrTr AsG =  

m
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−
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Controller 
We have a P controller with unknown gain: 

( ) CC AsG =  
Actuator 

The valve is of linear working characteristic, its model is a proportional element: 

( ) AcAc AsG =  

The maximum flow rate over the valve: 

2
1bar

2bar

1bar

p

1bar

p
p

pumpvalve
rel ==

∆
=∆=∆  

h

m
17

1

2

h

m
12

p
kW

33

rel

rel
max,vmax =⋅=∆⋅=

ρ
 

Thus the gain is: 
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Resultant transfer function 
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Controller gain 
If the valve position steps up from 10 % to 90 % then the level should step up from 
0.5 m to 2.5 m. 
The flow rate at 0.5 m: 
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The flow rate at 2.5 m: 
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The step disturbance is: 
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The level should answer by changing from 0.5 m to 2.5 m: 

( ) ( ) 2m0.5m2.5m0LLL̂ =−=−∞=  
The change is, by definition, the step multiplied by the gain: 
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b. What is the flow rate if the level is 1.5 m in steady state? 
Substitute the controller gain to get the loop gain: 
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We know that at level 0.5 m the valve is open to 10 %. We have already calculated 
the flow rate at this opening: 1.7 m3/h. From such a steady state a step disturbance 
arrived and the system responded by increasing the level to 1.5 m. First we calculate 
how much the disturbance was, and then we can calculate the flow rate. 
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c. From the steady state of question b, another input pipe is suddenly open, and a new 
stream starts with (c1) 5 m3/h, (c2) 10 m3/h. How does the level change in time in 
both cases? 
The transfer function derived in part a is valid from Win to L only. Here we need the 
transfer function from Win to Wout: 
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We have step disturbance. The step response of this first order lag: 

( )











−⋅⋅=

−
#T

t
#

out e1AatŴ  
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8.5tŴ0WtW  

c1: a=5 m3/h 
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The final value is: 
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c2: a=10 m3/h 
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The final value would be: 
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but the maximum flow rate is 17 m3/h, and new steady state cannot form. After 
Wout reaches 17 m3/h, the level increases linearly, and finally the water overflows. 
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14.9 Problem 9: Frequency function and tuning 
The transfer function of the controlled section in a feed-back loop is 

( )
( )

( )[ ]3
smin3

1smin12

e6.0
sG

+⋅
⋅=

⋅−

 

 
Tasks 

a. Compute the frequency function of the controlled section and visualize it in a 
Bode plot! 

b. Compute the tuning with PI controller according to the Ziegler-Nichols table! 

c. Compute the frequency function of the open loop (with the tuning in task b) at 
frequency ω = 0.1 1/min! 

 
Solution 

a. Compute the frequency function of the controlled section and visualize it in a Bode 
plot! 
The frequency function can be considered as a series of a dead time element with gain 
AD and dead time TD, and three identical first order elements with gain A and time 
constant T: 
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where TD=3 min and T=12 min. Decomposition of 0.6 to AD·A3 can be done in 
several ways. For simplicity let us choose A=1 and AD=0.6.  
Properties of these element can be calculated independently, then the gains must be 
multiplied and the phase shifts added together to get the function of the whole section. 
Denote the dead time by index 1, and the third order element obtained by combining 
the three first order elements by index 2. 
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( ) ( )( )ωωϕ ⋅−⋅=⋅−⋅= min12tanarc3Ttanarc32  
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gggiG ωωωω ⋅==⋅  
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The calculations are shown in a table below. (The last column belongs to Task b.) 
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ω [1/min] 0.01 0.02 0.05 0.1 0.2 0.5 0.11 
( )

1
iG ω⋅  [–] 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

ϕ1 [°] -1.72 -3.44 -8.60 -17.19 -34.38 -85.95 -18.91 
( )

2
iG ω⋅  [–] 0.979 0.919 0.631 0.262 0.057 4.44·10-3 0.220 

ϕ2 [°] -20.53 -40.49 -92.89 -150.58 -202.14 -241.61 -158.56 
( )ω⋅iG  [–] 0.587 0.551 0.379 0.157 0.034 2.66·10-3 0.132 

ϕ [°] -22.25 -43.93 -101.49 -167.77 -236.52 -327.56 -177.47 
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b. Compute the tuning with PI controller according to the Ziegler-Nichols table! 
The critical data belong to the frequency at which the phase shift is −180°. Reading 
the Bode plot we find that this is at ω0 = 0.11 1/min. In that point the gain of the 
controlled section is 0.132. The critical gain and the critical period are then 

( ) 58.7
132.0

1

g

1
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crit,C ===
ω

 

min12.57
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1
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22
T

0
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ω
π

 

According to the Ziegler-Nichols table, the suggested tuning is:  

41.358.745.0A45.0A crit,CC =⋅=⋅=  
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2.1

T
I crit ===  

 

c. Compute the frequency function of the open loop (with the tuning in task b) at 
frequency ω = 0.1 1/min! 

Amplitude ratio of the section at ω = 0.1 1/min read from the table above: 
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1.0

==ωω  

Amplitude ratio of the controller at ω = 0.1 1/min 

( )
( )

48.3

min6.47
min

1
1.0

1
141.3

I

1
1Ag

2
222CPI

=
⋅








+⋅=

⋅
+⋅=

ω
ω  

Open loop amplitude ratio is their product:  

( ) 55.048.3157.0g
min

1
1.0

* =⋅=
=ω

ω  

 
Phase shift of the section at ω = 0.1 1/min read from the table above: 

°−=






 = 77.167
min

1
1.0ωϕ  

Phase shift of the controller at ω = 0.1 1/min: 

°−=


















⋅
−=









⋅
−= 85.11

min6.47
min

1
1.0

1
tanarc

I

1
tanarcPI ω

ϕ  

Open loop phase shift is their sum:  

°−=°−°−=






 = 62.17985.1177.167
min

1
1.0* ωϕ  
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14.10 Problem 10: Frequency function and tuning 
The transfer function of the controlled section in a feed-back loop is 

( ) ( ) [ ]( )
[ ]( ) [ ]( )5.1smin301smin20

75.0smin15
esG

3

smin6

+⋅⋅+⋅
+⋅= ⋅−  

 
Tasks 

a. Compute the frequency function of the controlled section and visualize it in a Bode 
plot! 

b. Compute the tuning with P controller according to the Ziegler-Nichols table! 

c. Compute the phase margin of the closed loop! 

d. Compute the gain margin of the closed loop! 
 
Solution 

a. Compute the frequency function of the controlled section and visualize it in a Bode 
plot! 
First we simplify the expression: 

( ) ( ) [ ]( )
[ ]( ) [ ]( )1smin205.11smin20

1smin2075.0
esG

3

smin6

+⋅⋅⋅+⋅
+⋅⋅= ⋅−  

( ) ( )
[ ]( )3

smin6

1smin20

5.0
esG

+⋅
= ⋅−  

From here on, we can calculate in the same way as in Problem 9 above. The table is: 
ω [1/min] 0,01 0,02 0,05 0,1 0,2 0,5 0,065 0,04 

( )
1

g ω  [–] 1 1 1 1 1 1 1 1 

ϕ1 [°] -3,44 -6,88 -17,19 -34,38 -68,76 -171,90 -22,35 -13,75 
( )

2
g ω  [–] 0,471 0,400 0,177 0,045 7,13·10-3 4,93·10-4 0,113 0,238 

ϕ2 [°] -33,93 -65,40 -135,00 -190,30 -227,89 -252,87 -157,29 -115,98 
( )ωg  [–] 0,471 0,400 0,177 0,045 7,13·10-3 4,93·10-4 0,113 0,238 

ϕ [°] -37,37 -72,28 -152,19 -224,68 -296,65 -424,77 -179,64 -129,73 
 
The Bode plots are shown below. 
 

b. Compute the tuning with P controller according to the Ziegler-Nichols table! 
The critical data belong to the frequency at which the phase shift is −180°. Reading 
the Bode plot we find that this is at ω0 = 0.065 1/min. In that point the gain of the 
controlled section is 0.113. The critical gain is then 

( ) 85.8
113.0

1

g

1
A

crit

crit,C ===
ω

 

According to the Ziegler-Nichols table, the suggested tuning is:  

42.485.85.0A5.0A crit,CC =⋅=⋅=  
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c. Compute the phase margin of the closed loop! 
First we are looking for the frequency at which the amplitude ratio of the open loop is 
1: 

( ) ( ) ( ) 1ggg
P

* =⋅= ωωω  

But |g| of a P-controller, at any frequency, equals its gain AC: ( ) 42.4Ag CP
==ω  

( ) ( ) 142.4gg* =⋅= ωω  

( ) 23.0
42.4

1
g ==ω  

Either reading from the Bode plot or by iterative calculations we can find that the 
frequency at this point is ω = 0.04 1/min. The phase shift of the controlled section 
can be calculated, and is shown in the last column of the table above, it is 
ϕ = −129.73°. P controllers do not have any phase shift, thus this is the phase shift of 
the open loop as well. 
Thus the phase margin is 

( ) °=°−−°−= 27.5018073.129PM  
 

d. Compute the gain margin of the closed loop! 
First we are looking for the frequency at which the phase shift is −180°. However, 
this is already found; ω0 = 0.065 1/min, because the P controller does not have any 
phase shift. 
The amplitude ratio of the controlled section at ω0 = 0.065 1/min is 

( ) 113.0g
crit

=ω  

The amplitude ratio of the P controller at any frequency is 

( ) 42.4Ag CP
==ω  

The amplitude ratio of the open loop at ω0 = 0.065 1/min is 

( ) ( ) ( ) 5.042.4113.0ggg
Pcrit

* =⋅=⋅= ωωω  

(Of course, since this is according to Ziegler-Nichols and no phase shift of the 
controller) 

Thus the gain margin is 

( )
2

5.0

1

g

1
GM

*
===

ω
 

 

 


