Gamma

szerző: PGY

Construct a γ spectrum for Kr-87 based on the following information.

keV	%
402	100
850	19
2050	6
2570	42

Spectroscopy

α and β spectroscopy

All that is commonly done is:

Count total activity - quant analysis

E_{MAX} determinations

Methods required to count α and β are not very discriminating if at all.

β are not monochromatic anyway.

Typical β spectra

Determination of E_{MAX}

This can be evaluated by finding the maximum thickness of a substance that the radiation can penetrate.

alpha - air, beta - aluminum

A plot of E vs. thickness can be produced.

Seldom used for analytical purposes. Liquid scintillation is the major method used for measuring β .

Compton effect

Due to the incidenty colliding with an electron and being scattered.

A portion of the energy is transferred to the electron and γ is formed. If it escapes, that energy is lost - not detected.

The fact that any amount of energy can be lost in this manner results in a continuum of energy values where $E \le \gamma$.

Compton effect

Compton effect

Some scattering angles are less favored than others.

This results in the

Compton edge

Compton valley

This effect is observed with all photo peaks.

Sum peaks

A radioisotope will often have more than one mode of decay.

This can result in more than a single being observed.

If the isotope produces two or more intense gamma and the sample has a relatively high activity, a sum peak may be observed.

Sum peaks

Sum peaks

A sum peak is always of much lower intensity than any of the y that produced it.

What happens:

- On occasion, the 1.17 an 1.33MeV g both enter the NaI(TI) detector at the same time.
- A single pulse of photons are produced and recorded as a single pulse.
- The analyzer has no way of telling knowing the source of the pulse.

Pair production

When a γ interacts with the strong electrical field around a nucleus, it is possible to form a e⁻, e⁺ pair.

This may occur when ever $E_{\gamma} > 1.022$ MeV (Twice the rest mass of an electron)

The e⁺ is quickly stopped by the crystal and annihilated resulting in the production of $2-0.511 \text{ MeV } \gamma$

Pair production

The two 0.511
MeV γ that are produced will travel in opposite directions to conserve momentum.

Pair production

As the energy of the incoming gamma increases, the probability of pair production will go up.

Pair production can cause an effect of the resulting y spectrum.

Because the two 0.511 MeV γ are moving at new directions, they might escape the crystal - escape peaks.

Escape peaks

Lead X-rays

When your detector is shielded with lead, a peak a 72 keV may be observed.

Lead X-rays

This effect can be reduced by moving the shielding farther away from the detector/source

lodine X-ray escape

If E_γ < 200 keV, the _γ can be totally absorbed by the top of the crystal.

The nearness to the surface may allow an iodine X-ray to escape (28 keV)

A peak at E_γ - 28 keV may then be observed.

lodine X-ray escape

Annihilation Peak

A 0.511 MeV γ peak can occur for any β^+ emitters. Since the β^+ is typically annihilated at the crystal's surface, only a single γ is detected.

Backscatter

This artifact appears in most spectra.

It results from any
that undergo a 180°
backscatter.

Backscatter

The maximum energy for a 180 backscatter is ≤ 0.225 MeV. A peak near 0.2 MeV is common.

Bremsstrahlung

"Breaking energy"

Many γ emitters are also β - emitters.

These β can cause a continuous distribution of low energies being observed in your spectrum.

Bremsstrahlung

Sample spectrum, Cs-137

Sample spectrum, Te-132

Detector resolution

The resolution of your detector/counting system will determine how accurately you can qualify various isotopes.

Resolution is based on photopeak width.

We usually use the 0.662 MeV γ of Cs-137 as a reference.

```
Resolution = W_{1/2} / P

W_{1/2} = channel range at 1/2 height

P = channel of peak maximum
```

Detector resolution

For NaI(TI), crystal size has a direct effect on resolution.

As crystal sizes increases, you get better absorption the Compton is smaller so resolution improves.

If high resolution is required, use a Ge(Li) or intrinsic Ge detector.

Ge(Li) vs Nal(TI) resolution

Note the tradeoff.

Higher response with the Nal(TI).

Higher resolution with a Ge(Li).

The Chart of the Nuclides only lists the most intense y produced by an isotope.

Sources like the CRC Handbook of Chemistry give more completey tables.

This information can be used to estimate what a γ spectra should look like and identify potentially interfering peaks.

Construct a γ spectrum for Mg-28 based on the following information.

keV	%
32	96
350	70
391	31
950	29

Construct a γ spectrum for As-71 based on the following information.

keV	%	keV	%
ann. ra	d.	1051	3
630	10	1918	1
834	100	2202	4
893	2		