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Chapter 1

Flowsheeting and compound
processes

1.1 Flowsheeting

Determining all the (originally missing) data of a flowsheet is called flowsheeting.
This means first of all computation of steady state, detailed material and energy
balance, all the flow rates, compositions, pressure and temperature data, and ad-
ditional design parameters (e.g. reflux ratio, scale of a reactor, etc.) needed to
achive some specified product quality or process constrains. This calculation is
needed mainly because of two reasons:

1. When the process (the flow sheet) is designed, the unit operations are designed
relatively independently, assuming some estimated properties of the streams arriv-
ing to the designed unit from other places of the process. These data should be
brought to consistence before one may believe the data are acceptable.

2. One would like to know, at least by calculation, the missing, not measured
data of an already working plant in order to fit a mathematical model to it before
estimating the effects of some planned change in the process.

Solution approaches are demonstarted here on an arbitrary, and small, example
flowsheet shown in Fig. 1.1. It consists of a unifier (mixer) (U), a reactor (R),
and a vapor-liquid phase equilibrium component separator (S). Some reagent A is
converted to B according to equation

A-592B

where ( is conversion factor. Let the feed be pure A. Both components occur at the
exit of the reactor, stream (3). The product is separated from the reagent in unit
(S). Raw materal A is more volatile than B, so that liquid stream (5) will contain
the product, and vapor stream (5) is recycled to the unifier unit (U) to mix with
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Figure 1.1: Simplified flowsheet

feed stream (1) and give together stream (2), feed of the reactor. Since component
separation is not perfect, stream (4) will carry some of the product component B,
and the product stream will be contaminated with reagent A, as well.

For simplity, only material balance is considered here. Stream component
flow rates are considered as two-entry arrays of components A and B: X,; (i €
1,2,3,4,5).

Problem:

Given feed stream X; 4 = 100 kmol/h, X1 g = 0kmol/h, reactor pressure pgp =
4 bar, reactor temperature Tr = 320 K, separation tank temperature Tg = 345K,
and recovery ratio of A into vapor phase n4 = 0.98, as well as physico-chemical
models detailed below, compute all the component flow rates X; 4, X; g, conversion
factor ¢ in the reactor, and the needed pressure pg in the separation tank at steady
state of the process!

Physico-chemical models:

This empirical model describes conversion in function of temperature Ty and
pressure pr in the reactor, and mole fractions x4 and zp in the reactor’s feed:

¢ = 0.93exp (—0.76p—R - 0.22x—3)
TR TA

Vapor-liquid equilibria in the separation tank is modelled with modified Raoult-
Dalton equation

Pys =yazapy
Py =vBxBpgy

where z are mole fractions in liquid, y in vapor, vapor pressures p° of pure compo-
nents at temperatures T' are calculated with

77.4246
T —230

123.14
T —230

lgp$ = 2.033 —

lgp% = 1.0044 —
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and activity coefficients v are modelled with

1.1.1

0.176
lgya = ﬁ
(-3
rB
0.176
lgvp =

x 2
(-2
TA

Equation solving approach

Collect all the equations describing the behaviour of the system and find its solution
with any general mathematical method.

Here we provide such an equation system of the problem that its all unknown
variables is expressed to left hand side of one of the equations, i.e. it is given in
the form of « = g(x):

1.

© XN v o~

10.

11.

12.

13.
14.

Xoa=X1a+Xs4
Xop=X1B+XupB
Xsa=(1-0X2a
Xsp=Xop+2(Xs 4

_ _076¢PR o9 X2B
C0.936Xp< 0.76TR 022 )

Xaa=X34—X5.4
X4B=X38— X5
Xs.4a=(1-n4)X34

° X
X5, =X5 APATA 245
PBYB X4,4
77.4246
2.033
p% =10 Ts — 230
123.14
1.0044 3
p% =10 Ts — 230
0.176
(%)
ya=10\ X5B
0.176

s = 4P X5,4 + VBPEX5,B
Xs5.4+ X5.B

All the necessary equations are listed here, and even more. For example, equation
14 can be omitted and applied after solving the remaining system of 1 to 13.
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Table 1.1: Results with equation solving approach

n | Xaa Xop | X3a | Xsp | Xua | Xup | Xsa | XsB
140.00 240 54.33 | 470.28 | 53.24 | 233.05 | 1.000 199

5 | 151.76 | 249.42 | 66.96 | 483.98 | 56.45 | 232.22 | 1.150 | 200.58
10 | 166.22 | 230.71 | 66.61 | 434.33 | 65.88 | 250.95 | 1.340 | 187.35
15 | 162.58 | 248.21 | 63.54 | 443.58 | 62.54 | 247.89 | 1.277 | 201.65
20 | 162.64 | 244.72 | 63.87 | 442.11 | 62.68 | 243.08 | 1.280 | 198.76
25 | 162.57 | 243.52 | 63.72 | 441.61 | 62.48 | 243.47 | 1.275 | 197.79
30 | 162.40 | 243.42 | 63.66 | 441.08 | 62.39 | 243.44 | 1.273 | 197.72

o

Similarly, equations 10 and 11 could be applied once only, before all the others,
since temperature of the separation tank is specified.

For solving the system, one has to provide estimation to all the unknowns.
We list a possible estimation array for the component flow rates in the 0-th row
of Table 1.1. Activity coefficients are estimated with 1.0, vapor pressures with
0.5 bar, and conversion with 0.8.

Using iterated substitution with 70 % damping, the calculation converged in
30 steps with stop criterion 0.05% relative error limit as shown in Table 1.1.
Calculated pressure of the separation tank is 1.071 bar.

Equation systems are ususally to be solved with applying some numerical pro-
cedure. Most of them involve repeatedly substituting the estimated values of un-
knowns into a function that calculates updated estimates. This series of estimation
is expected to converge to the solution.

Basic methods are explained in Section (3.1).

Although solving a large system of equations is a difficult task, modern tech-
niques are avaliable to help us. The real burnen of equation solving approach is
collecting all the equations ncessary to model the system, all in proper form, un-
failed, and providing good initial estimates. Many unit operations are combined in
a real process, some of them are compound units difficult to model in themselves.

1.1.2 Sequential modular approach

Sequential modular approach applies input to output models to the moduls (units)
of the flowsheet, and tries to solve them in the sequence, i.e. along the paths,
assigned by directions of the streams.
How it is done is shown using the small examle problem. First the input—output
relations are collected:
Unifier module:
1. Xgia = Xper,4 + Xpe2,4
2. Xpi,B = Xve1,B + Xpe2,B
Reactor module:
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2.

3.
4.

zB _ Xbe,B

T4 Xpea

¢ = 0.93exp <—0.76p—R - 0.22x—3)
TR TA

Xiia=1—¢)Xpe,a

Xii.B = Xve,B +2¢Xbe, A

Separation tank:
This is an iterative procedure in itself.

A o

9.

10.

11.
12.
13.

14.
15.

16.
17.

2.033 —

p% =10 Ts — 230
1.0044 — 22314
p% =10 Tg — 230

Estimate liquid mole fractions: x4, tg =1 — x4
Va =naXpe,a
La=(1-n4)Xpe,a
Lp="Ep,
TA

Ve = Xie, — LB

0.176
(-2)
124
YA = 10 TB
0.176
rB 2
(1-2)
v =10 Ta
va Vii,a + VB
yp=1—ya

€ = |yaYBPBTB — YBYAPYT Al
If £ <a small positive number then go to step 17.
(new) Lki,A (new) (new)
T =— =1—-z
A Liia+Lip P 4
z4 = New estimate(xA,xE:ew)) sxp=1—1x4
Return to step 4.

DS = YAPLRT A + YBPBTR

Calculate the flow rates:

Provide an estimate for the recycled stream (4) as X4 4 = 141.64 kmol/h,
X4’B = 95.655 k‘mol/h.

Stream (2) is calculated with the unifier module. Stream (3) is calculated
with the reactor module. The separation tank module is used to calculate an
updated stream (4*), stream (5), and the pressure of the tank. Then we check if
the component flow rates of stream (4) and stream (4*) are approximately equal.
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Table 1.2: Results with sequential modular approach
X2 A Xop | Xza | Xsp | Xya | Xup | Xsa | XsB
241.64 | 95.66 | 54.33 | 470.28 | 53.29 | 246.53 | 1.086 | 233.76
161.06 | 237.76 | 62.62 | 434.64 | 61.36 | 238.72 | 1.252 | 195.92
161.67 | 239.81 | 63.01 | 437.13 | 61.75 | 240.09 | 1.260 | 197.04

161.84 | 240.39 | 63.12 | 437.82 | 61.86 | 240.47 | 1.262 | 197.35

Neo) Ror] VL) Kenl Ibn]

If not, the updated values are substituted to stream (4), and the calculation starts
again.

Results obtained with undamped direct substitution are shown in Table 1.2.
The iterative calculation stopped after 9 steps. Calculated pressure of the separa-
tion tank is 1.072 bar.

Circuits and tearing streams

A preferable property of sequential modular approach is that if there is no recycle in
the flowsheet then no iteration is needed, at least on the level of flowsheet (iteration
may be needed inside the modules). For example, calculation of the flowsheet shown
in Fig. 1.2 is done by simply calculating units (A), (B), and (C), in this sequence,
obtaining values of streams (2), (3), and (4), in this sequence.

(1) (2) (3) (4)

—= A B cC ———=

Figure 1.2: An acyclic flowsheet

The process shown in Fig. 1.1 cannot be so calculated because not all the input
streams of unit (U) are known. If the flowsheet is small and simple, one can at
once see where the recycling stream flow, and which streams should be assignes as
tearing streams. In more complex cases, however, circuits (cycles) of the flowsheet
are to be explored, and one has to find a minimum number of tearing streams for
easier estimation and calculation.

For exploring cycles, theory of directed graphs can be applied. Units (modules)
of the flowsheet, as well as hypothetical sources of the input streams and sinks of
the ouput streams of the flowsheet are considered as nodes, and streams connecting
the modules are considered as (directed) edges, or arcs, of a direted graph. For
example, a directed graph of the example flowsheet is shown in Fig. 1.3.

One possible way of exploring cycles is systematically building up a so-called
spanning tree of the graph. Spanning tree is an acyclic (undirected) graph, or a
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C (1) - (2) R 3) S (5) C

Figure 1.3: Directed graph of the example flowsheet

-

2)—=(3)—=(1)

ae
Se(0) (10—

Figure 1.4: A more complex directed graph

D—0——=—D—=E—>O
O ONRCENG

Figure 1.5: Spanning tree of the more complex directed graph

directed graph without directed circuit or by-pass. Spanning tree of a given graph
is a graph consisting of all the nodes and a subset of the edges of that graph. For
example, the spanning tree of the more complex graph of Fig. 1.4 is shown in Fig.
1.5. This is called spanning all the nodes of the original graph with a minimum set
of edges so that there is only one path from a source node(s) to any of the nodes.
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A spanning tree can be constucted in the way of Ariadne’s thread (from Greek
mythology). In practice this is done by walking along the edges of the graph,
turning back if reaching a node already reached earlier, and cutting out edges
leading us to such situation. Cutting these nodes cut (eliminate) cycles and by-
passes. Cycles of the studied (more complex) graph are: [5,7], [9,10], [2,3,9,8],
[2,3,(9,10),8], [1,3,9,8], [1,3,(9,10),8], [1,2,3,9,8], [1,2,3,(9,10),8].

Convergence. Once the cycles are known, tearing streams can be assigned. If not
known better, minimum number of tearing streams (to be estimated and updated)
are assigned, but if it is the best for converging the calculation is uncertain. The
only merit obtained this way is a possible easier estimation.

Converging a complex flowsheet with recycles can be rather difficult with se-
quential modular approach. One reason of this may be difficulty in converging the
moduls themselves if they are compound units. Another reason can be lack of any
hint to estimate the tearing streams.

1.1.3 Simultaneous modular approach

According to the simultaneous modular approach, models of moduls are decom-
posed to linear and non-linear parts. Linear submodel of each module is a ho-
mogeneous linear function of the variables in the input stream to that module,
and the non-linear submodule calculates the non-constant coefficients of the linear
submodel.
The models of our example process are as follow.
Unifier modul:
Linear submodel:
L1, Xgia= Xpe1,4 + Xpe2,4
L2. XiiB = Xpe1,B + Xte2,B
Non-linear submodel: None.

Reactor module:
Linear submodel:

L3, Xpia=(1—¢)Xpea

L4. Xy B = Xpe,B + 20 Xpe, A
Non-linear submodel:

_ CamePR oo Xbe,B
1. C0.936Xp< 0767 — 022 )

Separation tank module:
Linear submodel:
L5, Va=naXpea
L6. LA = (1 - UA)Xbe,A
L7. VB =nBXoe,B
L8. LB = (1 - nB)Xbe,B
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Non-linear submodel:

9,033 — 77.4246
1. p% =10 Ts — 230
10044 — 2314
2. py =10 Ts —230
3. Estimate liquid mole fractions: x4, g =1 — x4
0.176
A 2
(%)
4. YA = 10 B
0.176
rB 2
(1-)
5. v =10 za
6. a= %
YBPB

BETTTTN
1+a<——1)
nA

8. Va=naXpea
9. LA: (1_77A)Xbe,A
10. VB = npXpe,B
11. LB = (1 — nB)Xbe,B
Va+ Vg
13. yp=1-ya
14. € =|yayBPBTB — YBYAPLT A
15. If € < a small positive number then go to step 19.

12. YA

(new) Lki,A . (new) _ (new)
16. =z, —m,mB =1-x,
17. a4 = New estimate(z4, 20" s 25 =1 — 24
18. Return to step 6.
19. ps =7apjza +vBPBTB
Results of the non-linear submodel are pressure ps and recovery ratio 7p.

Linearized flowsheet model
A linearized model of the full flowsheet can be built up from the linear submodels
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Table 1.3: Results with simultaneous modular approach

n| Xsa Xop | Xza | Xsp | Xya | Xup | Xsa | XsB
0 | 141.64 | 198.30 | 42.49 | 396.60 | 41.64 | 198.30 | 0.850 | 198.30
1 | 158.95 | 241.18 | 60.16 | 438.77 | 58.95 | 241.18 | 1.203 | 197.59
2 | 162.56 | 240.62 | 64.26 | 438.05 | 62.97 | 240.62 | 1.285 | 197.43
3 | 161.56 | 240.61 | 62.82 | 438.09 | 61.56 | 240.61 | 1.256 | 197.48
4 | 162.00 | 240.61 | 63.27 | 438.08 | 62.00 | 240.61 | 1.256 | 197.46
(L1 to L8):
I 1 0 0 0 —1 000] -X27A_ _Xl,A_
o 1 0 0 0-100| |Xop X1p
—1-¢ 0 1 0 0 000| |Xsa 0
-2¢ -1 0 1 0 000 . X3p| _ 0
0 0 —-na 0 1 000 X4 A 0
0 0 0 —nB 0 100 X4B 0
0 0-(1—na) O 0 010] |Xsa 0
0 0 0 —(1-mp) 0 001| [Xsp| | O |

The simultanous modular calculation:

Simultanous modular calculation is a kind of successive linearization procedure.

A szimultdn moduléris eljaras matematikai szempontbol nézve fokozatos lin-
earizés. First estimation is given to non-constant parameters in the coefficient
matrix. For example, estimate ¢ with 0.7, and np with 0.5; the coefficient matrix
is then fully determined. Solve the system of linear equations to get the first es-
timation of the component flow rates. The apply the non-linear submodels in any
sequence to obtain updated values of the non-constant parameters in the coeffi-
cient matrix: ¢ and np. This pair of linear - nonlinear computation is iterated till
convergence.

Results of this calculation are shown in Table 1.3. Calculated pressure of the
separation tank is 1.071 bar.

Signal-flow graphs

Coefficient matrix of the linearized flowsheet model can be of any shape of sparsity,
and the whole thing must be considered in a Gauss or Gauss-Jordan elimination
procedure or in another numerical solution procedure. There is also another elim-
ination technique, that might be of interest.

This technique works on the signal-flow graph of the process. For obtaining such
a graph, streams are considered as nodes, and transformation of stream properties,
made in the modules, are represented by directed arcs. Each arc is attached with
a factor applied as a multiplier to its source node to calculate an increment to the
ist target node.
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Figure 1.6: Signal-flow graph of the example flowsheet

Signal-flow graph of the example process is shown in Fig. 1.6. The streams
(nodes) are connected by arcs characterized with matrix-valued factors because
streams are characterized with vector-valued data. Factors of the unifier arcs Eq
and E5 are 2 x 2 unit matrices. The factor of the reactor R’s arc is:

_(1-¢0
R ()
The factors of the separation tank’s arcs S; and S, are:
na 0
S =
' ( 0 nB)

_(1=ma O

o= ( 0 1- nB)

Signal-flow graphs can be constructed component by component, as well, with
scalar properties. Such a signal-flow graph of the example process is shown in Fig.
1.7.

Elimination is performed with equivalent transformations of the graph. These
include three basic transformation steps:

1 Elinimation of an internal node. This is shown in Fig. 1.8. Naturally,
if y = ax and z = by then z = abzx.

2 Elimination of a by-pass arc. This is shown in Fig. 1.9. Evidently, if
y = ax + bx then z = (a + b)x.
3 Elimination of a loop. This is shown in Fig. 1.10. If y = az + by then
a
-
applied in proper order: y = (I — B)f1 A x.

z . In case of vectorial data with matrix factors, letters are to be

The solution of Fig. 1.6 with this method is: Xs = (I — E2S; R)"'E; X1,
X3 =RX2, X4 =5:X3, X5 =S52X3s.
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Figure 1.7: Scalar signal-flow graph of the example process

Ca Cb C N @ axb {z)

Figure 1.8: Rule 1 of equivalent transformations of signal-flow graphs

a

@, D = O—*—=0

Figure 1.9: Rule 1 of equivalent transformations of signal-flow graphs

Figure 1.10: Rule 3 of equivalent transformations of signal-flow graphs

—_
I
S5




1.2. Selection of design and tearing variables 15

1.2 Selection of design and tearing variables

1.2.1 Design variables

Models normally consist of variables and equations, called also constraints. Con-
straints incorporate specifications as well, for example specifying pressure as 5 bar
would give rise an equation p = 5. Models of unit operations typically contain more
variables than independent equations. Denote number of variables by V', number
of independent constraints (equations) by E, then a so-called degree of freedom F
can be defines as

F=V-F

Solution of an equation system is normally determined if F = 0. If /' > 0 then F
number of variables are undetermined, one has to arbitrarily select such a number of
varables and assign some value to them at will, thus constituting F' new constraints.
These selected variables are called design variables.

Figure 1.11: Heat exchanger connections

For example, a simplified steady state model of a heat exchange used for cooling
down some product stream is given below (Fig. 1.11)

Variables:

1. S type of heat exchanger
@@ heat power
A heat transfer area
U overall heat transfer coefficient
W1 inlet cold stream mass flow rate
W5  outlet cold stream mass flow rate
W3 inlet hot stream mass flow rate
Wy outlet hot stream mass flow rate
t; inlet cold stream temperature
10. ty outlet cold stream temperature
t3 inlet hot stream temperature
ty outlet hot stream temperature

© XN LN

—_ =
[N
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13. Aty logarithmic approach temperature
14. ¢, hot stream specific heat
15. ¢. cold stream specific heat

Simplified model equations:
1. Q=UAAy,
(ty —ta) — (t2 — t3)

2. Aty =

t1 — 1ty
In
ty —t3
3. Wi =W,
4. W3=W,
5. Q = chh(tl - tg)
6. Q= Wsce(ts —t3)
7. U:U(Wl,WQ,W3,W4,t1,t2,t3,t4,ﬁ)
Specifications:
8. Wi=...
9. t1=...
10. to =...
1. ty=...
12. Chp = ...
13. c.=...

7 model equations and 6 specifiations together add to 13 constraints, i.e. £ =
13. Number of varables is V = 15, hence degree of freedom is F' = 15 — 13 = 2.
Two of the non-specified variables must be selected and specified arbitrarily by the
designer. In princple, any two of the non-specified variables 8, Q, A, U, Wy, W3,
Wy, tg, Aty, can be selected as design variables.

The unit operation may be optimized (according to some objective) against the
selected design variables.

Non-continuous variables are expedient to select into the design variables be-
cause their value cannot be obtained as a result of numerical calculation. Such
a variable in the heat exchange example is type 5 that can be double pipe heat
exchanger, shell-and-tube heat exchanger, plate heat exchanger, and includes many
other data, e.g. in case of shell-and-tube type it can be co- or countercurrent, one-
or two-pass exchanger, vertical or horizontal, a number of tubes, their arrangement
(square or hexagonal), etc.

Once f is selected, the task to select another one remains. It does matter which
one is selected. Selecting cooling water flow rate W3 makes the design easy because
all the unknown variables can be calculated by simple substitution as long as we
keep a good sequence as shown in Fig. 1.12. If, on the other hand, heat transfer
area A is selected then only W5 and @ can be calculated directly, and all the other
variables must be determined by solving a system of 5 equations simultaneously,
as is shown in Fig. 1.13.

How can the design variables expediently selected?
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fi

)

-6
ol

fs @ fe f2
fa fz
I3 Wo

Figure 1.12: Acyclic design sequence with design variables § and Ws

Js
(i)

3

f
f2
Ja
fo
fz

Hbobd ¢

Figure 1.13: Design sequence with design variables 8 and A
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1.2.2 Selecting design variables to obtain acyclic sequence

If all variables occur in each equation then simultanous equation system cannot be
avoided. Simpler solutions are possible only because not all variables take place in
each equation. Consider, for example, the equation system (1.1) (V =8, E = 4,
F =4):

fl( X1, X2, x3 ): 0
fal r3, T4, Ts )=0
f3( T4, Ty, Te )=0 (1.1)
fa( T2, 7, xg )=0

{

Figure 1.14: Bipartite graph of equation system (1.1)

Variables and equations can be coupled according to if the variable take place
in the equation. This coupling can be represented with a bipartite graph (Fig.
1.14), or an occurence matrix (1.2).

T1 X9 I3 T4 I5 Te T7 xs
Al T 11

fo 1111 (1.2)
f3 11111
fa 1 1] 1

Finding acyclic sequence is possible if the matrix is sparse enough. The search
is based on finding a variable that is coupled to exactly one equation, this can be
expressed from this equation only. Such a variable is z; is our case, coupled to fi.
Expressing x; is indicated by directing the edge toward it. All the other variables
in that equation must be known before calculating z1, thus they must be directed
toward f; (Fig. 1.15).

The analogous step in the occurence matrix is finding a column with exactly
one entry '1’ (’true’), that entry assignes its row coupled to this column ((1.3)).
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Figure 1.15: Selecing the first variable and equation

I X1 I To I3 T4 Is Tg X7 xIs
h 1|1
- T (1.3)
I3 111
fa 1 11

Then delete the assigned variable and equation ((1.4) and Fig. 1.16).

AT 4

Figure 1.16: Graph that remains after deleting the first assigned variable and
equation

1.
]/ T2 T3 Ty T5 Te T7 g
S 1 0 /8 g
fa | 1 1 1 '
fs |/ 1 1 1
fo L)1 1 1
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The same step is repeated in the remaining graph or matrix ((1.5) and Fig.
1.17):

Figure 1.17: The second step

1. 2.
11/ |$2 | T3 T4 s 6 7 s

AN Ay A A /aN/aNavIay
f2 1/l 11 (1.5)
fs | T [ 1 [ 1

AN 1|1

These steps are repeated until all equations are deleted:

Figure 1.18: Third step



1.2. Selection of design and tearing variables 21

1. 2. 3.
)| A |$3| z L5 6 7 g
O T N A v
s. (e | 1|1

fs | 0L 1 1 1
P2 N N W 2 N W W W W 2 W

Figure 1.19: Fourth step

1. 2. 3. | 4.
V| s ] e | we | wr | s
. 7 N 1 N 1 U W W W
S L LT A L

1
3.

N PEY N N s 1 1
L2 7 N N W W W A W W

Variables not deleted are not expressed from any equation, therefore these will
be selected as design variables: x5, xg, 7, and zg. Based on the sequence of
selections, a proper sequence of calculation can be given (Fig. 1.20).

In each step of the algorithm, a variable with exactly one coupling is selected.
There can be sever such variables in any step and, accordingly, there can be several
different proper selections and acyclic design sequences.

It may also happen that no good selection if found in a step. Then we may find
a good sequence by first stepping back to an earlier stage and selecting another
variable in that stage.

1.2.3 Tearing variables

Acyclic calculation sequence cannot always be constructed. If each variable is
coupled to at least 1 + &k (k > 0) equations, but k is significantly smaller that E
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\

f2

i W

Figure 1.20: Assigned acyclic calculation sequence

then it is worth looking for a calculation sequence with k tearing variables, i.e. k
variables to estimate and update in iteration cycles.

Let number of variables be V, number of equations (constraints) be FE, i.e.
degree of freedom F' =V — E. Then not only F' design variables but additional k
tearing variables have also be selected. Az expedient way to accomplish this task is
first temporarily deleting k equations, finding an acyclic calculation sequence with
F + k hypothetical design variables, and then selecting k£ of them to be tearing
variables, together with re-including the k£ temporarily deleted equations, leaving
the rest F' to be real design variables.

How this is done is demonstrated in the following small example. Let the original
problem be:

Ty | T2 | T3 | T4 | T5 | Te
il l]1
Hhl1 11
75 T 111 ]1]1
7, T 11

Here V = 6, EF = 4, and F = 2. Acyclic sequence cannot be found since each
variable is coupled to at least 2 equations, i.e. k = 1. Therefore we temporarily
omit one equation; let it be, just by chance, the first one:

T1 | T2 | T3 | T4 | T5 | T
1 1] 1
s 1] 1]1]1]1
1 111

An acyclic calculation sequence is shown in Fig. 1.21 with hypothetical design
variables x3, x5, and xg.
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()

{5 ()

Figure 1.21: Acyclic calculation sequence after dropping f;

However, the temporarily omitted equation f; should also be taken into account.
Its connections are also shown in Fig. 1.22.

O

s fs %
A= ONORE

Figure 1.22: Acyclic calculation sequence together with connections of f;

Now both variables of fi are necessarily input variables to it because they are
output from some other equation. However, one of them should be turned back to
become an output variable from f;. Let it be, for example, x1. After redirecting the
arc, now x7 is calculated from two equations, fi and fo, instead of one. Therefore
we have to turn back one of the arcs entering to fo, and this procedure can be
evolved aling paths of the graph until arriving to a hypothetical design variable.
Such a state is shown in Fig. 1.23. Having reached such a state, that hypothetical
design variable is re-qualified as a tearing variable: It has to be estimated and, after
performing an acyclic calculation, updated repeatedly in an ieration process. In
our case x3 becomes a tearing variable whereas x5 and x¢ remain design variables.
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()

Ts5 f3
fa T4 T3 fi
f2

Figure 1.23: Tearing system after redirection of arcs.

1.3 Steady state of separation columns

Detailed models of steady state of countercurrent multistage fluid separation pro-
cesses like distillation (rectification and stripping), absorption or desorption, coun-
tercurrent extraction are so large and complex that they deserve a treatment in
their own.

Here we deal with staged models only, even packed columns are modelled stage-
wise; moreover we assume equilibrium stages.

1.3.1 Steady state models of separation columns

The basic element is the model of a(n equilibrium) stage. Stage efficiency may
be taken into account but here we consider equilibrium stages only. If otherwise
not indicated, we apply here notions of a distillation column. In this sense, an
equilibrium stage works as a vapor - liquid equilibrium separation unit with at
least two feeds: vapor emerges from below and liquid flows down from above, they
mix in the stage, and separate to two output streams. The vapor emerging from
the stage is in equilibrium with the liquid flowing down from it.

Connections and variables of such a stage are shown in Fig. 1.24.

Stages are conventionally counted top down at modelling (in contrast to the
industrial practice where they are counted bottom up). Pressure of stage j is p;,
its temperature is 7}, the molar flow rate of liquid flowing from it is L; + s;, its
mole fraction array is @;, the molar flow rate of the stream (vapor phase or light
liquid phase) emerging from it is V; 4+ S;, its mole fraction array is y;. Molar
enthalpy of the downflowing liquid is h;, that of the emerging phase is H;. Part
of the liquid can be led out of the column as side product with flow rate s; so
that only L; reaches the next stage j + 1 below. In the same way, part S; of the
emerging phase might be led out as sideproduct so that only V; reaches the next
stage j — 1 above. From stage j — 1 above flows down a stream with flow rate L;_;
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V-
J Lj—l
Sj
<
Yi, Hj
Fj, H; ) Q;
z; stage j T}, p;
Lj, hj
Sj
—
Vit L,

Figure 1.24: Two-phase stage

to stage j, and from the stage j + 1 below emerges Vj,1, characterized with the
respective compositions and molar enthalpies. These connections are a bit changed
at the two end-points (top and bottom) of the column.

Feed with flow rate F;, composition z;, and some molar enthalpy #; may arrive
to any stage j. Heat can be introduced to any stage j as @;. (Negative (); means
cooling.)

If there are C' components in the process then any stage is described by 3C + 9
scalar variables.

The steady state model consists of 4 main equation groups, the so-called MESH
equations, and additional axiliary equation groups. These are as follow, in case of
N stages.

MESH equations These equations are related to stages: (component) Material
balances around each stage, Equilibrium relations on each stage, mole fractions
Sum conditions (up to 1) on each stage, and Heat balance around each stage:

("M"): Component molar balances around stages

Lj1wij1 + Vitayijrr + Fjzij

) ) 1.6
—(Lj+sj)xi,j—(Vj+Sj)yi,j:0 (t=1...C; j=1...N) (1.6)

These are slightly modified at top and bottom since there is no stream 0 or stream
M +1.

("E"): Phase equilibrium equations. These can be of any form, here they are
represented by equilibrium ratios K ;:

vij =Kijzi; (i=1...C; j=1...N) (1.7)
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("S"): Summation in both phases (i.e. Sx and Sy)

C

~1+4) ;=0 (j=1...N) (1.8)
i=1
C

14 yi;=0 (j=1...N) (1.9)
i=1

("H"): Stage heat balances

Ljihj 1+ VigiHi + FjH; +Qj (L.10)
—(Lj+sj)hj —(V; +8;)H; =0 (j=1...N)

Total molar balance Total molar balance on the stage can also be written:
Li1+Vijp1+F;—(Lj+s;)—(V;+S;)=0 (j=1...N) (1.11)

but this is a combination of the component balances, not independent of them.

Auxiliary equations These are mainly detailed equilibrium models for comput-
ing K; ;, see chapter 2, providing a function as

Kij=K(T},pj,xj,y;,i1) (i=1...C; j=1...N) (1.12)
as well as functions for molar enthalpies:

hj = h(Tj,pj,a:j) (] =1.. N) (1_13)
Hj = H(Tj,p;,y;) (j=1...N) (1.14)

Not considering additional variables involved in the auxiliary equations, there
are altogether N(4C + 9) variables and N(3C + 5) equations, and the degrees of
freedom is N(C + 4).

Column pressure is fixed at just one point of the system, and pressure drop over
stages formes according to physics. Usually no additional equations describing pres-
sure drop dependence on flow rates, temperature, and composition are introduced,
but pressure drop is estimated and pressure p; on each stage are thus specified (IV
specified ariables). Usually all the F}, z;, and H; are known, thesa are together
N(C + 2) scalar data. Additional specifications are N — 2 heat input data (the
end-point condensation and boiling powers are usually variable to be calculated),
side stream flow rates, and two other data are specified to get a system of equations
with equal number of unknowns. Typical selection for the last two data are one
product flow rate (e.g. distillate D) and reflux ratio R.

Several solution methods are published and in use for calculating the unknowns.
Each has a preferred set of specifications.



1.3. Steady state of separation columns 27

1.3.2 Initial estimation

Any solution method is used, unkonwns must be estimated before starting iteration.
The simplest estimations are listed below.

Temperature At the endpoint the temperatures can be estimated based on the
expected product purity: bubble point and dew points can be estimated or calcu-
lated. In between, along the column, a temperature profile linear in stage numbers
may be assumed. This is usually far from the solution but provides good initial
start.

Equilibrium ratios Equilibrium ratios may be considered as functions of tem-
perature only, for this aim. One may start up from constant relative volatilities, as
well.

Compositions Expected mole fractions in the products are usually known. Com-
position on feed stages are near the feed composition. A linear profile in stage
numbers can be applied. Vapor compositions can be obtained in the simplest way
with supposed constant relative volatilities a; = o /,:

QT j

Yij = =0
D k1 kT

Internal flow rates Usual design variables are distillate flow rate D and reflux
ratio R; hence flow rates in the top of the column can be determined:

Lo=RD

Vi=(R+1)D

The other flow rates along the column can be calculated with material balance and
constant molar overflow approximation:

Lj=Lj1+qFj—sj (j=2,...N)
Vin=Lj+s;+V;+ 5 -Lja—F (G=1...N-1)

where ¢; is estimated liquid phase ratio of the feed to stage j.

1.3.3 Linear subsystem with tridiagonal coefficient matrix

Equations M (1.6) are linear in mole fractions, and equations H (1.10) in flow rates
if the other variables are fixed. If K; ; are (temporarily) also fixed then the vapor
compositions can be expressed as y; ; = K; jx; ;, and only the z; ; are unknown
variables. These equations, linear after fixing the other variables, have a special
form beause at most three stage index values take place in each equation: the stage
to which the balance is made, the next upper stage, and the next lower stage: j—1,
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j, and j 4+ 1. Thus the coefficient matrix is of a tridiagonal one. This is essential
because such systems can be solved fast and easily . Let the coefficients, variables,
and right hand sides be denoted as follows:

(b1 1 ol dy
az by co T2 do
a; bj Cj X Zj = dj
an—1by_1¢cNv1 TN-1 dn-1
L anN bN 1 L TN 1 L dN 1

then it can be transformed to bidiagonal, using Gauss elimination:

1o x1 U1
1 g2 T2 Un
1 gj X J?j = ’U,j

1 gy TN-1 UN_1

L 1 ] L ZN | | un |

From this form the unknowns are at once can be expressed. The solution procedure
works with two additional arrays: g; and u;:

Qlfb1
dy
U = —
1 by
¢j
g; = j:27 aN_l)
T by —ajg1 (
d; —aju;_
wj=A—2397L (j=2... N)
bj —a;jgj—1
TN = uN

Tj=Uj — GjTj+1 (jZN—l,...,l)

1.3.4 Simultaneous methods

Simultaneous or global solution methods solve the whole system of equations in a
simultaneous manner, in contrast to sequential methods. All simultaneous methods
apply some kind of Newton-iteration, which is a kind of successive linearization.
They differ from each other in technical details and degree of applied simplifying
assumptions.
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Many unknowns are to be determined in this computation (see section 1.3.1):
Tj, Lj, V}', h]‘, Hj, Ti gy Yig, and Ki’j (i:]., 2, ey C) (j:]., 2, ey N), ie.
N(3C + 5) variables. This can be a large number. For example, with C = 5
and N = 70 (a usual, moderate scale problem) this is a system of 1400 variables
and equations. This can be decreased by considering the auxiliary equations as
functions and substituting them to the MESH equations. In that case the number
of unknowns (z; ;, vi,;, Tj, L;, V;)) is decreased to N(2C + 3) .

Even this is a large system, 910 x 910 in the above example. Note also that
partial derivatives (entries of the Jacobian matrix) are needed for performing New-
ton-iteration. Many of those derivatives are zero (we have a rather sparse matrix)
but, even so, many derivatives have to be computed, and many of them can be
calculated with relatively large numeric uncertainty only. For example, composi-
tion dependence of equilibrium temperature is not known as an explitice function
but should be determined with bubble point calculation, an iterative procedure,
discussed in 2, using difficult fugacity and / or activity coefficient models.

Computation work load can be decreased by expressing some variables from
some equations and substituting them to others. Another opportunity is not up-
dating Jacobian in every single iteration but only after several steps. Temporary
neglection of some members in computing partial derivatives can also be used to
decrease the load. For example, at computing partial derivative of equilibrium ratio

oo = i (T ®5)i 97 (1)
ij = 0
J

according to temperature one may neglect temperature dependence of ; ;:

OKij _ i (%)
8Tj pj de Tj

Only the two best known methods are drafted here.

Naphtaly-Sandholm method

This is the most general and widely applied procdure first publisged by Naphtaly
and Sandholm in 1971. It involves large computation load; its convergence depends
havily on initial estimation, but is fast near the the solution.

The method considers liquid and vapor component flow rates

lij = Ljwi
vij = ViYi

as basic variables instead of mole fractions. Instead of applying summation con-
straints Sy and Sy, it decreases the number of variables and equations by substi-
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tuting the expressions

C
L= liy

i=1

C
Vi=Y v

i=1

and

Tij = 7=
L;

gy = Vi
i = Y
Vj

to the other equations. The remaining equations M, E, and H are

5 Sj
lz,j—l + Vi 41+ FjZ’L,j (1 + 25:1 lkJ-) l’L,j (1 + 25:1 Uk,j) Vij = 0 (Mz,])
C C
Ui,jzlkaj_Ki,jli,jzvk,j =0 (Ei ;)
k=1 k=1
C C C C
h]‘,1 Z li7j71+Hj+1 Z Ui,j+1+Hij+Qj—hj <S]‘ + Z l@j) —Hj <S] + Z Ui,j) =0
i=1 i=1 i=1 =

(H;)

If auxiliary equations K; j, hj, and H; are substituted as functions then there
are only N(2C'+1) equations to be solved for variables I; ;, v; ;, and T;. Simplifying
approximations are yet necessary in computing the Jacobian because the number
of partial derivatives is a large number even after this reduction of scale.

The method can be further simplified by applying constant molar overflow (prac-
tically: assuming sectionwise constant L; and V) so that variables v; are cancelled.
In this way the Jacobian becomes a tridiagonal hypermatrix, easier to deal with.
Constant molar overflow is an acceptable approximation in many cases.

Ishi-Otto method

This method, first published by Ishi és Otto in 1973, considers x; ;, 1, and V} as
basic independent variables. Vapor mole fractions are expressed with equilibrium
ratios as (1.7), and liquid flow rates are expressed with material balance:

j
Lj=Vig1 =Vi+ > (Fr — s, — Sk) *)

k=1
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and then expressions (1.7) and (*) are substituted to the forms (1.6), (1.8), and
(1.10) of equations M, S, and H, respectively. In this way the number of indepen-
dent variables is decreased to N(C + 2).

It neglects partial derivatives of equilibrium ratios K; ; by temperature T; and
same component mole fractions z; ;; it computes partial derivatives of enthalpies
h; and H; by temperature 7T} only, neglects the others. This gives rise to a special
shape of Jacobian.

Residues M ;, S;, and H; take place in the linearized equation system of the
Newton method, applied to increment variables Az; ;, AT}, and AVj; the simplest
of these is equation group for residues S;:

C
Z Axm = —Sj
i=1

Equation groups derived from component balances can be sorted according to com-
ponents, in the following form:

[ 1 _Axm 1 _* * _ATl
* Ax; o * ok AT,
* X A.l?@j —+ * X ATJ
Ax; N1 * ATN_
L ] Az;n | | | AT~ |
EX: ] ANZE M 1
* % AV, M o
+ * X AV} = — Mi’j (i:1,2, C)
* AVN_l Mi,N—l
L i | AVN | M; n
Shape of equations derived from enthaly balances:
* % 1 AT [ * 1 1AV ] [ H; 1
* ATQ * %k k A‘/Q ]H[i’Q
% % AT; + _— AV =— | H;;
ATn_; * AVn_q H; nv—1
| | ATN L | LAVN | H; ~
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Terrible it might look, this is a special form so that first variables Ax;; can be
eliminated and then the system of scale 2N can be solved.

1.3.5 Sequential methods

Sequential (or decomposition) methods assign tearing variables like those in section
1.2, and these are updated in iteration cycles. Other variables can be computed
in well defined calculation sequence as functions of the actual values of the tearing
variables.

These are the simplest, and least demanding, computation methods but do
not always applicable to more difficult problems like systems involving azeotropes
or more complex processes e.g. distillation with side strippers, or combination of
distillation and absorption processes.

The basic procedures are BP method applicable to near boiling mixtures (dis-
tillation), SR method applicable to wide boiling mixtures (absorption, desorption),
and ISR methods applicable to multistage countercurrent extraction. There are
several versions with detailed suggestions for improving convergence or best speci-
fication and estimation methods, but only the basic ideas are discussed here.

BP method

Its scheeme is shown in Fig. 1.25. The procedure consists of two embedded cycles.
Internal flow rates L; and V; are modified in the outer cycle, whereas temperatures
T; are updated in the inner cycle. The temperature is updated stage by stage for
known (estimated) compositions with bubble point calculations, that is why the
method is called BP. Equilibrium ratios K; ; are updated here as well, needed for
computing the material balances, then enthalpies in the outer cycle so that mole
rates can be updated according to heat balance.

Estimation of equilibrium ratios Kj; ; is needed because they take place in the
component balances. When component balances are solved for a given compo-
nent 7, the mole fraction of that component is computed to all stages: x; 1, =2,
..-%ij, ---Ti N, i.e. mole fractions of a particular stage j are computed in C dif-
ferent balance calculations; their sum is not necessarily 1. However, normalized
mole fractions are needed for computing bubble points and enthalpies; hence is the
normalization step (Sx equations):
normalized __ Li,j

" chz1 Tk,j
Bubble points are computed stage by stage, independently. The obtained vapor
mole fractions y; ; are normalized; equations S, are incorporated in bubble point
calculation.
Top vapor V7 and reflux stream Lo flow rates are determined by D and R. Flow
rates Vi1 és L (j=1,2, ..., N — 1) can be calculated stage by stage using total
material balance (1.11) and heat balance (1.10):

z (j=1,2,...N)

Vitr=1Lj+s;+Vi+ 5 = Fj = Lj
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Wtart

Estimate T}, L;, and V;

v

Estimate equilibrium ratios K ;

To each component (4):

compute z; ; from balance (tridiagonal matrix)

v

Normalize mole fractions x stage by stage

v

j=1,2,...N:

Bubble point calculation, T; and K ;

v

Compute h; and H;

Compute boiling and condensation heat poower

Compute L; and V; from balances

Converged?

Stop

Figure 1.25: Scheeme of BP method
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(Hjp1 —hj1)Lj1 + (Hjr = H;)Fy — (Hjr — hy)sj — (Hya — Hy)(V; + 55)

L Hjt1 = h;
(Stage N is the boiler).

The convergence starts fast but then slows down near the solution, and usually
oscillates. Several ideas are published to improve it, with some success, but the
general tendency remains.

All the product stream flow rates must be specified; no way to find product flow
rate for specified purity, unless embedding the whole procedue in an outer cycle.
Either reflux ratio or condenser heat power is to specified, or the similar data at
the bottom.

Temperature is sensitive to liquid composition in the bubble point calculations;
that is why BP does not converge if componenst with far different boiling points
are present (absorption, desorption).

SR method

The SR method, used for computing wide boiling point mixtures, absorption and
desorption, updates temperatures with enthalpy balance, and liquid flow rates with
summation equations.

Scheeme of the procedure is shown in Fig. 1.25. The fractions computed from

component balances are used before or without normalization to update flow rates
Lj:

C
updated __ y o
Lj =L; E Ti
i=1

The products L;x; ; are component flow rates to sum up, hence the name SR: "Sum
of Rates’. Mole fractions V; are expressed from total balance:

Vien=1Lj+sj+V;+ 5 = Fj—Lj

Estimated K;; and normalized liquid mole fractions = are used to calculate
vapor mole fractions, and they are also normalized before using them to calculate
enthalpies a recompute equilibrium ratios K ;.

Temperatures are updated in the inner cycle with Newton iteration, in princi-
ple, but only one step is made here. (No need for a full iteration with convergence.)
Neighbouring trays take place in the linearized equation system so that the calcula-
tion is simple because we have a tridiagonal coefficient matrix. The only difficulty
is computing partial derivatives according to temperatures.

According to experience, SR converges well if applied to a proper mixture.

ISR methods

No boiling temperatures have to be calculated in case of extraction processes. In-
stead, one may specify temperature as a whole or stage by stage. Heat power needed
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Wtart

Estimate T}, L;, and V;

v

Estimate equilibrium ratios K ;

To each component (4):

compute z; ; with balances (tridiagonal matrix)

v

Compute L; with Sy

Compute V; with total material balance

v

Normalize mole fractions x
Compute and normalize mole fractions y

v

Compute h; and H;

Update T; with enthalpy balance (Newton step) ‘

Recompute K ;

Converged?

Stop

Figure 1.26: Scheeme of SR method
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for maintaining the assigned temperatures can be computed afterwards; thus en-
thalpy balance can be omitted. Thus, MES equations may be solved instead of
MESH.

Applying BP method is nonsense because of the same reason. Thus, modified
versions of SR, called ISR, (Isothermal SR) can be used.

Although two liquid phases are in equilibrium here, we keep the above notation:
V and y are used to denote light phase flow rate and composition, respectively.

Feed stream, (and, perhaps, side product flow rates), pressures, and tempera-
tures must be specified. Initial estimates are to be given to flow rates V; and L;,
and equilibrium ratios K; ;. Flow rates can be estimated using sectionwise constant
V/L phase ratios, even mutual unsolvability of the phase solvents may be assumed.

No temperature calculating cycle is there in ISR, but there is oanother one,
instead, because of the strong composition dependence of liquid-liquid equilibrium
ratios.

Scheeme of the Tsuboka-Katayama version (1976) of ISR is shown in Fig. 1.27.
The inner cycle strives for stability of mole fractions x; ; before normalization, but
activity coefficients should be calculated with normalized mole fractions. Once the
mole fractions do not change more, flow rates V; are updated according to the SR
idea, and L; are calculated from material balance.

Version of Renon-Assilenau-Cohen-Raimbault (1971) is shown in Fig. 1.28.
Not one or the other phase flow rate is updated but their ratio:

new V
Ve Vol

= L?ew LJU§L)

Aj

Flow rates of one of the phases (e.g. V;) can be eliminated by substituting the
so updated phase ratios. In this way a linear system with tridiagonal coefficient
matrix is obtained for the folw rates of the other phase.

1.4 Cost estimation

1.4.1 Cost estimation levels

Costs are estimated with different precision at different levels of design. The fol-
lowing levels are roughly distinguished (Pikulik and Diaz, Chem. Eng., 84(21),
106, (1977)):

1. Over-of-magnitude estimate. Or : Ratio estimate. This is based on
similar previous data; its propable accuracy is: +40%. For making this
estimae, rough approximating formulas are applied.

2. Study estimate. Or: Factored estimate. This is based on knowning the
flowsheet and major items of equipment; its propable accuracy is: £25 %.
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J/Start

Estimate V; and L;

Estimate equilibrium ratios K; ;
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For each component (4):

compute z; ; with component balances (tridiagonal matrix)

v

Normalize x
Compute Yij = Ki,jxi,j

Sum up and normalize y: (0 = ", ¥i;)

v

Compute 7;,; in both phases

Compute K; ; = %(,?)/%(5)

47 No
X435, Yi,5 converged!

V}new — V}o’j, ("Sum of Rates”)

Compute L; with material balance

L;, V; converged?

Stop

Figure 1.27: Scheem of ISR - Tsuboka-Katayama version
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J/Start

Estimate Vj, L;, and K ;

Estimate equilibrium ratios K; ;
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To each component (7):

compute z; ; (tridiagonal matrix)

Compute L; (tridiagonal matrix)
Vi =A;L;

L;, V; converged? No

Normalize mole fractions xz and y

Compute v; ; and update K; ;

K; ; converged?

Stop

Figure 1.28: Scheeme of ISR - Renon version
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3. Preliminary stimate. Or: Budget authorization estimate, or: Scope esti-
mate. This is based on suffient data to permit the estimate to be budgeted;
its propable accuracy is: +12 %.

4. Definitive estimate. Or: Project control estimate. This is based on almost
complete data, but completion of drawings and specifications; its propable
accuracy is: 46 %.

5. Detailed estimate. Or: Contractor’s estimate. It is based on complete
engineering drawings, specifications, and site surways; probable accuracy is
+3%.

Designing the process also comes with costs; it depends on the scale of the
process to be designed, measurable roughly with the expected costs themselves.
Table 1.4 gives a hint on costs of design at about 1977:

Table 1.4: Costs of design in USD, in 1977

<1MMS$ | IMM-5MM$ | 5MM - 50 MM $
Study, 103 USD 5-15 12-30 20-40
Preliminary, 102 USD 15-35 30-60 50-90
Definitive, 103 USD 25-60 60-120 100230

1.4.2 Cost estimation models
Capacity exponent

Simple, though rough, power relation can be given between costs of identical type
but different capacity equipments or technologies installed in the same period (same
year or not far in time). Denote costs with K, and capacity with C then, as a rough

estimate, one may apply
K _(G)*
Ky \ O

where exponents a of equipment or plant types are fitted to empirical data. For
example, cost exponents of some equipments are shown in Table 1.5, and of some
technologies in Table 1.6.

If cost of an equipment of process of some capacity is known, and the same kind
has to be designed for another capacity, then its cost in the period of installing the
known item can be estimated.

Cost index

For comparing and estimating costs of items of the same kind and same capacty,
technical and economic journals has been listing so-called cost indexes for decades.
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Table 1.5: Capacity exponents of some equipments

equipment exponent
bubble cap tray 1.20
vacuum drum dryer 0.20
shell-and-tube heat exchanger 0.44
centrifugal pump 0.61
non-mixed, lined reactor 0.41

Table 1.6: Capacity exponents of some technologies

process exponent
catalytic cracking 0.85
catalytic polymerization 0.70
oxigene production 0.47
acetylene production 0.75
high pressure polyethylene production 0.90

These indexes relate to cost in a given period (year, quarter, or month) to some
reference period, similarly to inflation rates and stock indexes. If the cost of an
item was known as K in an earlier period, and the cost index of that earlier period,
and the actual period, repspectively I; and I, are known then the actual expected

cost can be calculated as
Ky, I

K, I
With applying capacity exponents and cost indexes together, at least magnitudes
of the costs of a planned item can be estimated, as far as the spanned time does
not stretch over 10 years.
There are many cost indexes, the most general ones are as follow:

Marshall & Swift Equipment Index (M&S) Its two main branches are (a)
all-industry index, formed by averaging 47 different indexes of referring to industry,
commerce, houskeeping machines etc., and (b) process-industry index, an average
of indexes of 8 most important branches (cement, chemicals, clay, glass, dyes, paper
and pulp, petrol, rubber) weighed by their total production. Its starting year is
1926.

Engineering News-Record Construction Index (ENR) A compound labor
and material cost index of industrial developments, starting in 1976.
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Nelson Refinery Construction Index (NRC) Its components are: skilled
labor, unskilled labor, iron and steel, construction materials, fittings, etc. Starting
year: 1946.

Chemical Engineering Plant Cost Index (CE) Its main components: equip-
ment, machinery, auxuliaries (61 %), set-up (22 %), construction material and labor
(7%), enineering (10 %). Starting year: 1959.

journal peridicity | M&S | ENR | NRC | CE
Chemical Engineering week X X
Engineering News-Record week X
Oil and Gas Journal forthnight X

Equipment cost functons

In order to obtain cost estimation with more accuracy that order of magnitude,
cost functions of main equipment parameters can be fitted to experimental cost
data. These are usually provided in plots, but can be transformed to analytical
functions as well, usualy in polynomial form. Such functions are listed, for example,
in Table 1.7, where K: cost, L: length, height, D: diameter, p: pressure load, A:
heat transfer area ($, m, bar, m?).

Table 1.7: Cost functions of some cylindrical units

equipment cost function

coat of tray column K = 460L0-91 D0-88,,0.18
coat of packed column K = 1260L0-68 D0-96
settler K = 8L0.24D0.5p0.18
shell-and-tube exchanger | K = 240A%5°

catalytic reactor K = 100H0%-57D1-72p0.76

These functions underestmate the real costs by far because they do not take into
account additional cost elements like set-up, insulation, piping, painting, etc. These
items can be taken into account roughly with factoral technique or more precisley
with modular technique.

Factoral technique

Here the additional cost elements are related to the sum of all the equipments in
the process:
K=fY K,
i

The simplest (and the first) factor type is that of Lang depending on consistency
valid to the whole of the technology (Table 1.8).
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Table 1.8: Lang factors

process type factor (f)
solid 4.6
solid and liquid 4.9
liquid 5.7

Several ideas have been suggested for decomposing the single factor to a product a
partial factors. For example:

f = ftfpfm

where f; counts for temperature effects, f,, for pressure effects, f,, for construction
material.
Modular technique

Here the additional cost elements are related to the equipments:
K=> fiK
i

so that the additional cost factors can be given as equipment-dependent.

Most known is Guthrie’s decomposition to basic cost elements as direct labor
costs, direct material costs, and indirect costs, all together constituting net module
costs, and secondary cost elements further breaken down to smaller items like

(1) auxiliary materials: pipeline, substructure, smaller elements, instrumentia-
tion, electric network, insulation, dyeing

(2) construction costs: building in materials, allocation, groundwork etc.

(3) indirect costs: transportation, insurances, taxes, overhead, engineering work,
safety factor, subcontractor fees

Basic costs are modified by factors belonging to equipment kinds, for example:

Pressure vessel: K = Kpfmfp

Air cooler: K = Kp(fs+ fi + fm)
Distillation tray: K = Kg(fs + fi + fm)
Heat exchanger: K = Kg(fi + fp)fm

wherel Kp is basic costs, fy, is construction material factor, f, is pressure factor,
ft is equipment type factor, fg is tray spacing factor.
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1.5 Flowheet design

This is a rather complex activity; here we give some hints only about what points
should be kept in mind, and how a process is developed step by step. We apply
an example of hydrodealkylation of toluene to benzene; this example is taken from
Douglas, J.M.: Conceptual Desing of Chemical Processes, McGraw Hill, 1988

This chemical reaction takes place at high temperature an pressure, without
catalyst, at about 35 bar and 620 C to 700 C temperature, and a side reaction is
formation of diphenyl:

Toluene + Hy — Benzene + CHy
2Benzene = Diphenyl 4+ Hy

Hydrocracking happens at higher temperature. In order to avoid coke forming,
5 to 1 hydrogen excess is applied, and the reaction product is quenched under
620 C.

Available feedstock is pure atmospheric toluene, and hydrogen gas at 38 bar,
contaminated with 5 % methane.

The ususal decision hierarchy is the following:

Batch or continuous process
Preliminary material balance

Reactpr and recyclng

Separation system

a. Gas recovery

b. Liquid recovery

5.  Energy supply and recovery

6. Other utilities, and control system

7. Allocation, piping, instrumentation, etc.

-

Process design stretches roughly up to step 6.

Many process ideas are ruled out at the earlier stages, based on rough estimates.
For example, if the cost of raw materials is higher than the income expected from
selling the product than any cost of the equipment would only make the situation
even worse. Another example is that if the process is not profitable even without
considering costs of purifying the product, but just considering costs of a reactor,
then again the process is not worth to consider further.

A first idea is shown in Fig. 1.29. Diphenyl (D) is a side product beside benzene
(B). Hydrogen has to be blown down because methane wold be too expensive to
separate, and would be accumulated in the recycle. Profitability is highly dependent
on conversion, reacttor scale, compressor costs, etc.

The first real version is shown in Fig. 1.30. Another one, with diphenyl
recycling and re-reacting is shown in Fig. 1.31. Final verion wit energy recovery
is shown in Fig. 1.31.
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Figure 1.29: First idea
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Figure 1.30: First version

1.6 Questions

1. What approaches of flowsheeting can you mention? Give a short description
of them!
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H,, CH,4 Blowdown
Compressor

O ——=> Reactor @ Flash
@ Q@ Benzene Hy, CHy

Toluene

=
mn

Benzene colu
Stabilizer

Figure 1.31: Another version

2. What is signal-flow graph? What is it for? How to simplify it?

What is simultaneous modular approah in mathematical sense?

- w»

What are design variables? How many of them can be assigned?
5. Haow can you find an acyclic calculation sequence?
6. Write a system of MESH equations!

7. List the discussed decomposition algorithms for counercurrent separation pro-
cesses! Wich is applicable for what kind of processes? What are their rough
scheemes?

8. What kind of cost estimation technique do you know? Describe them!

1.7 Suggested literaure

WESTERBERG A. W., HuTCHINSON H. P., MOTARD R. L., AND WINTER
P.: Process Flowsheeting. Cambridge Universities Press, 1979.
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Figure 1.32: Final version
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VEVERKA V. V., AND MADRON, F.: Material and Energy balancing in the
Process Industries. Elsevier, 1997.

PETERS, M. S., TiIMMERHAUS, K. D.: Plant Design and Economics for
Chemical Engineers. McGraw-Hill, 1969.

King, C. J.: Separation Processes. McGraw-Hill, 1971.

Douaras, J. M.: Conceptual Design of Chemical Processes. McGraw-Hill,
1988.



Chapter 2

Phase equilibria

2.1 Conditions of equilibria

Equilibrium of phases in direct touch (not separated by wall) necessarily goes with
thermal and mechanical equilibrium. Thus, equality of temperature and pressure
is necessary:

Tl =11 (2.1)
pl = pl!

Besides fixing variables T" and p, thermodynamic equilibrium is also characterized
by the extremum of free enthalpy, i.e. Gibbs free energy. Therefore calculation of
thermodynamic equilibria is reduced to extremum of molar free enthalpy function
G(T,p). Should the molar free energies of the phases in touch differ, the total free
energy could be decreased by shifting some material from one phase to the other.
Consequently the molar free enthalpies are equal if the total is at minimum:

Gl =gl (2.3)

In case of mixtures, equality of partial molar free enthalpy component by component
is also a necessary condition:

R a— (i=1,2,...,¢0) (2.4)

One of its consequence is the equality of molar values (2.3).

Conditions (2.1)- (2.4) are necessary but not always sufficient. In practice only
these conditions are usually checked in most cases because checking the condition of
minimum is rather difficult and time consuming. However, applying the condition of
minimum is applied more and more frequently, first of all for liquid-liquid equilibria
and high pressure fluid equilibria calculations.

48
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2.2 Formal thermodynamics of pure materials

Coherent equilibrium data triplets P—=V—-T of some pure material constitute a so-
called surface of equilibrium states in the three-dimensional linear space of that
material. The thermal equations of states are relationships describing these
surfaces of equilibrium states. Value of V' is unequivocal at some given p and T’
therefore equations of states are usually expressed to pressure:

p=p(V,T) (2.5)

Caloric (heat or energy related) properties (U, S, A, G), not considering entropy
S, are defined as difference from a reference state only, and their absolute value
is not important. Reference state is selected as soem well known ideal state like
perfect (ideal) gas or ideal (Einstein-) cristal.
For reference state, some state of the perfect gas is frequently used. Equation
of state of the perfect (ideal) gas is
o NKT _nNukT _ RT

p: v 2727

If some caloric property is defined with reference to the perfect gas then equi-
librium molar internal energy U, equilibrium molar entropy S, equilibrium molar
enthalpy H, equilibrium molar free energy (Helmholtz energy) A, and equilibrium
molar free enthalpy (Gibbs energy) G are computed as a sum of the corresponding
data of the perfect gas and some calculated departure function:

X =X"+AX

where X is any of the above caloric properties. The departure function AX can,
however, be defined in several ways depending on the selected reference state.

One of them can be the actual pressure and actual temperature reference con-
vention where the reference pressure p* equals the actual pressure (p* = p) and the
reference temperature T equals the actual temperature (T* = T)):

X (Tvp) = XD (Tap) + ATpAXr
so that the departure function is
AT,D‘Xr =X (Tap) - XD (Tap)

To calculate a potential function, one may start from the following general
thermodynamic relation:
(dA); = —p(T,V)dV
Free energy departure is obtained if pressure in integrated at constant temper-
ature along molar volume from the reference state up to the actual state of the real
gas:
actual state

AA=— / p(T,v)dv

reference state
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Here v is the molar volume index for integration whereas V is the actual molar
volume.

This integral goes from an ideal state to a real state and the path from the
former to the latter cannot be easily chosen. We utilize the fact that any gas
behaves as ideal gas at infinite dilution. The integral is decomposed into two parts:
one for a perfect (ideal) gas from the reference state to infinite molar volume and
another one for the real gas from infinite molar volume to the actual molar volume.

In case of arbitrarily given pressure and actual temperature reference conven-
tion:

1% o0
Ay A = —/p(T,v)dv — /pD (T,v)dv
oo v
where
-
p

i.e. we integrate from the perfect gas with volume corresonding to the reference
pressure to the actual state real material. However, the integral of the ideal gas
is not convergent here. This obstackle is overcome by adding and subtracting the

same term
’ RT
/ —dwv
v
oo

so that we get

\4 \4 0
ATP*A——/{p(T,v)—E] dv—/ﬂdv—/ﬂdv
v v v
S |

resulting in

Vs RT
and Z is the so-called compressibility:
pv pv pV

7I7=——=—="=——
NET nNAT RT
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In case of actual pressure and actual temperature reference convention, the
actual pressure is substituted:

v
ATPA:—/ {p(T,v)—g] dv—RTInZ (2.6)
v
Oz, A [Top(Tv) R
_ Tp _ D , U v _
Ar,S = (78T )V /[78T v]dv—i—Ran R

Once we know free energy and entropy, all other caloric state functions can be

expressed:
AU = AA+TAS

AH = AU + RT (Z — 1)
AG = AA+RT(Z —1)

2.2.1 Global instability and phase separation
We use the reduced form of the van der Waals equation in our example:

Lo 89 3
o 3n—1 9?

Its ¥ = 0, 75 reduced temperature isotherm is shown in Fig. 2.1. The equilibrium
reduced pressure belonging to this isotherm is 7° = 0.282463. A horizontal line
intersecting from the isotherm the reduced molar volumes (n;, = 0.489631 and
Ny = 5.64305) of the two equilibrium phases (L="Liquid’, V="Vapor’) is also shown
in the figure. The connecting horizontal section separates equal areas below and
above the isotherm. This is easy to show but only a knowledge obtained after
observing the phases: if there are two phases then this rule must be held. On the
other hand, this rule is not a reason of separating into phases.

According to the conditions by equilibrium thermodynamics, forming two phases
may be caused only by having one of the potential functions better value than with-
out it. Consider now a reduced volume between the two end-points of the horizontal
connecting section of the real isotherm of reduced pressure © = 0, 282463.

At given (fixed) temperature and molar volume, the equilibrium state is char-
acterized by minimum of (Helmholtz) free energy A. The curve

ArvA 9
RT — 89n

In(n—1/3)

of the reduced free energy departure (Apy A/RT) belonging to reduced tempera-
ture ¥ = 0.75 is drawn in fugure 2.2. The common tangent line drawn to this
curve at reduced molar volumes n;, = 0.489631 and ny = 5.64305 is everywhere
runs under the curve between the two tangent points, i.e. the free energy of the
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Figure 2.1: Isotherm of reduced EOS
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Figure 2.2: Reduced (Helmholtz) free energy and equilibrium distribution
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Figure 2.3: Reduced (Gibbs) free enthalpy and equilibrium distribution

homogeneous material is larger than what can be obtained by combining the two
values at the molar volume endpoints. That is why the homogeneous system in
unstable against densisty fluctuations inside this section. The real equilibrium free
energy function runs along the common tangent line between the two end-points.

The common tangent line intersect the vertical axis (n = 0) at —1.13839. You
can check by the general relation

B 0A
r==(av),

that this is just the reduced (Gibbs) free enthalpy departure (Ary G/ RT) belonging
to reduced molar volumes 1y, = 0.489631 and ny = 5.64305:

ArvG 9 3n
RT 49y 3n-—1

—In(n—1/3)

The curve of reduced free enthalpy departure computed to reduced temperature
¥ = 0.75 and the horizontal line at -1.13839 intersecting the free enthalpy curve
just at reduced molar volumes n;, = 0.489631 and 7y = 5.64305 are also shown
in Fig. 2.3. This perfectly justifies the knowledge that, since temperatures and
pressures of the distributing phases are equal, the extremum criterion belonging
to given pressure and temperature, i.e. molar free enthalpy, has equal values in
the two phases. Equality of the free enthalpies in the two phases is necessary
condition of phase equilibrium, whereas minimum of total free energy at given
temperature and molar volume is satisfactory condition of phase equilibrium.



2.2. Formal thermodynamics of pure materials 54

2.2.2 Fugacity coefficient

To check conditions (2.3), one has to calculate molar free enthalpies of the phases.
Such a calculation is always based on some equation of state.

If the same reference state is applied to both phases then checking equality of
the departure is enough. Since the temperatures are equal, the following equality
should also be satisfied:

1 IT
ég“ - A}fT 2.7)
Change of free enthalpy of perfect gas at constant temperature:
(AG™), = %dp = RTd (Inp)
Therefore free enthalpy of perfect gas can be written as:
GP (T,p) = G° (T,p) — G° (T,p*) = RT (Ilnp — Inp*) = RTIn ]% (2.8)

Departure from perfect gas behavior can formally be expressed by substituting
some property f in place of pressure p. This property f is called fugacity nicked
by Lewis . Equation

G(T,p) = RT lnzé (2.9)

is definition of fugacity.
Comparison of (2.8) and (2.9) reveals that (logarithm of) fugacity is closely
related to free enthalpy departure ArpG:

ArpG =G (T,p) — G*- (T,p) = RTln% =RTIngp (2.10)

In the same time, relation (2.10) is definition of fugacity coefficient (:

Necessary condition of equilibrium (2.7) may thus be written as

f1 = g1 (2.11)
or
Inp! = Inp!! (2.12)

The form (2.12) is used for modelling phase equilibria of pure materials, the form
(2.11) is, if properly expressed (see sections 2.5.1 and 2.5.2), for that of mixtures.
Logarithm of fugacity coefficient can be easily expressed based on departure

calculations:
Inp = lni = ArpG = Arpd +
Y=MS="RT T RT

(Z-1) (2.13)
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By substituting relation (2.6), one obtains a formula for the logarithm of fugacity
coefficient:

RT

lngo(V,T):—/v[M—ﬂdv—an—i—Z—l (2.14)

Using this integral to properly shaped equation of state gives rise to closed
formula for computing logarithm of fugacity coefficient in function of mole fraction
V and temperature T'.

2.3 A few well known equations of states

Cubic equations
The first cubic equation of state is the famous eqaution of van der Waals, 1873:

RT a

vdW: p=
This assumes a hard sphere model, with occupied volume ratio b/V. From this
data a relation between sphere radius o and parameter b can be calculated. The
second member expresses the effects of attraction potential. The following relation
can be given between the parameters and critical data:

27 R*T?
a=—
64 pc

RT.
b =
8pe

Substituting these, one obtains the reduced form of the equation:

89 3
vdWr: = 8 —1 1
This a practical application of corresponding states’ theorem. However, parameter
a is temperature dependent according to experiments: a = a(T).

This equation provides with a qualitative description of behaviour of non-polar
materials. Several trials have been made to improve its capability and make it
able to use for quantitative modelling as well. Most applied are the following two
variants:

Equation Peng és Robinson (1976) (abbreviated as PR):
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_ RT n a(T)
S V—b V2420V — b2

PR: p

Equation Redlich - Kwong (1949) modified by Soave (1972) (abbreviated as
SRK or RKS):

SRK - AT D)
' P=v T vew

Function a = a(T") can be decomposed in both equations as
a(T) = a.a(T)

and parameters a., b can be expressed by critial data. For example, in equation
SRK:

22
. = 0.49748 7 Te
Pe
T,
b= 0.08664%
Pe

Approximate temperature dependence for non-polar materials is:

a(T) = [1 + (1 - ﬁ) f(w)r

where w is the so-called acentricity factor (a material property), whose definition
incorporates a ratio of the vapor pressure measured at 70% of critical temperature

to the critical pressure:
w = —logy, (piT(”T”) -1
p

C

and shape of function f(w) is:
f(w) =048 + 1.57w — 0.17w?

Another function form is applied to polar materials.

Cubic equations serve well around and below critical point and, sometimes, even
at higher pressures. Below critical point they are able to trace vapor pressure and
mole fraction of vapour but model liquid density with significant error only. Liquid
density calculated with them must be corrected somehow.

Virial equations

Not too dense gases behave as approximately perfect gases and their non-ideality
can be described by expanding them according to density around the properties of
perfect gas. In its ususal form, compressibility

_

Z =
RT
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is expanded according to p around p =0 (V = o0):

.. > 1\" 1 & 1\"
Virial: P _ B | — = _ B | —
RT = 2 "(V) V‘Ln; "(V)

The virial coefficients are independent of p (of V') because of expansion
around p = 0 (V = o), and thus they are dependent on temperature only. The
first coefficient is, naturally, B; = 1; this is the only coefficient of perfect gas. The

other coefficients are
1 /ot
5= 5 (5 (r))
n—11\ 0p pRT p=0

Thus the value and temperature dependence of the coefficients can be determined
from empirical p—V-T (i.e. p—p—T) data. The coefficients can be calculated in case
of simple models like hard sphere. The coefficients are temperature dependent:
B, (T). Second virial coefficient By(T') has special significance because this is the
first coefficient expressing departure from the behaviour of perfect gases.

Virial equations can be expanded to arbitrary degree, and particular shape
variants may be inserted. For example, equation BWR (Benedict-Webb-Rubin,
1940) applies even an exponential member:

BWR:

T BoRT —Ay— % bRT —
p:R——|— 0 0 T2+R a ao C <1+l)exp<—’y)

1% V2 vs T ye T rays V2 V2

This equation has 7 parameters and fits well to the data at higher densities and
even for polar molecules.
Hard sphere and hard body equations

Liquids and dense fluids are approximately incompressible hence the hard sphere
model can be applied to them with success. Equation of state of Percus and Yevick:

) p _ 6] G 3¢162 3¢3(1— 43)}
PY (a): L—CB—’_O—CB)Q—’— (1—G)?

RT =
Another version of the Percus- Yevick model:

. p 6 G 3C1C2 3¢3
PY (b): ﬁ‘%[1—<3+<1—<3>2+<1—<3>3]
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The Carnahan and Starling equation of state:

6] G | 366 | EB-6)
RT 7 |1-¢ (1—-¢(3)? (1—(3)3

CS:

In the above equations

n n

o o
R
The only parameter of these equations is the radius o of the hard sphere.
Non-spherical molecular shapes can be taken into account with some shape
factor.

p

2.4 Vapor-liquid distribution of pure materials

Whether there is phase distribution at given state [p,T’] can be easily determined in
simple cases based on an equation of state expressed to pressure as (2.5), see (Fig.
2.4). If there is no more than one real V' molar volume belonging to the given T'
and P then separation into different molar volumes cannot occur.

Cubic equations of states are called cubic because expressed to zero they are
polinomials of third degree in V. For a given pair of T' and P, the three molar
volume roots can be analytically expressed. One of them is always real; the other
two are either real or form a pair of conjugated complex roots. That is, there is
either one real root or there are three real roots. Two or three of them may be
equal in the latter case; then we say in a sloppy sense that there are only two real
roots, or only one.

If there is only one real V root then the material is present in a single homo-
geneous phase at the given state T' and p. If there are three (Vi < V5 < V3) or
two (V7 < V3) different real roots then one has to check if the fluid separates to a
(liquid) state [p,T',V1] and a (vapor) state [p,T,Vs]; and if yes then in what phase
ratio. Whether the two hypothetical phases of states [p,T,V1] and [p,T,V3] are in
mutual equilibrium can be checked by criteria (2.3) i.e. (2.11) and (2.12), and
calculating fugacity coefficients with (2.13). The calculation and check consists of
the following steps:

Algorithm VLO: Check vapor-liquid phase distribution of pure materal
Given: temperature T and pressure p
Looked for: number and molar volumes V' of phases

1. If T > T, (critical temperature) then there is only one supercritical phase.
Stop.
Otherwise:

2. Roots V are computed at given p and 7T'. In case of a cubic equation, the
results is either a single root V' or real roots V) < V5 < V3 or only real
roots V1 < Vi.
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Figure 2.4: Roots V of an isotherm of a cubic EOS at a given p

3. If there is only a single root V then there is no phase distribution. If V'
is smaller than the critical V, then the homegeneous phase is considered
liquid, otherwise as gas or vapor. Stop.

If there are at least two real roots then:

4. Root Vj is considered as a hypothetical liquid molar volume, root Vs as a
hypothetical vapor molar volume.

5. Usng the actual form of equation (2.13), calculate the logarithm of the
fugacity coefficients belonging to the hypothetical phases:

Inp; <Ine (W1,T) (2.16a)

Inps <Ine (V5,T) (2.16b)

6. If the two calculated fugacity coefficients are approximately equal (their
absolute difference is smaller than a predefined small positive number)
then roots V; and V3 are accepted as molar volumes of the respective
phases.

Molar ratio of the phases is not determined by p and 7" themselves. An-
other property of the system, for example gross molar volume or enthaly
or inernal energy, should also be known for determining phase ratio. Stop.

7. If, otherwise, the two coefficients are different then the material does not
separate into two phases at the given state p and T, according to the

99
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model. (The obtained molar volume roots are not in mutual equilibrium.)
If o1 < 3 then then the material is considered as homogeneous liquid,
otherwise gas or vapor. Stop.

For a non-cubic equation of states the molar volume roots are determined nu-
merically.

Algorithm VLO is usually not applied in itself. (No need for that.) It may
occur as a part of determining boiling point or dew point. The boiling point tem-
perature T at given pressure p can be determined by Algorithm TO :

Algorithm TO0: Boiling point of pure material
Given: pressure p
Looked for: boiling (dew) point temperature Tg

1. If p > pc (critical pressure) then there is no boiling point. Stop.

2. Guess the boiling point with some 7' < T¢.

3. Carry out Algorithm VLO.

4. If equilibrium phase distribution is verified by Algorithm VLO then
T < T. Stop.

5. Otherwise modify value of T', and return to step 3.

Modification of T" in step 5 of Algorithm VLO is an open question. Difference
or ratio or difference of logarithms of the fugacity coefficients calculated wit equa-
tions (2.16a) and (2.16b) changes monotically in T near the root; thus the simplest
way is applying bisection root search method.

Boiling (or dew) point pressure pp can also be looked for at a given tempera-
ture 7. In this case value of pp is guessed with some p < p¢, and equality of
fugacities is checked in function of p:

Algorithm PO: Vapor tension of pure liquid
Given: temperature T
Looked for: boiling (dew) point pressure pg

1. If T > T then there is no boiling point. Stop.

2. Guess boiling pressure by some p < pc.

3. Carry out Algorithm VLO.

4. If equilibrium phase distribution is verified by Algorithm VLO then
pB < p. Stop.

5. Otherwise modify value of p, and return to step 3.

These algorithms are rarely used in practice because the vapor pressure function
of T is normally known and can be approximated by some function. For example,
the Antoine equation (derived from eqation Clausius-Clapeyron):
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Antoine: Inp=A— i

where A, B, and C are parameters fitted to measured data.
However, these algorithms are applied in modified forms for computing bubble
point and dew point temperatures and pressures of mixures.

2.5 Formal thermodynamics of mixtures

2.5.1 Ideal mixtures

Ideal mixture of real materials (non-ideal i.e. imperfect gases) is defined by the
property that each component’s departure from perfect gas behaviour is indepen-
dent of presence of the other components. In other words, for a given total number
N of all molecules behaviour of the N; molecules of kind ¢ does not depend on the
kinds of the other N — N; molecules. They produce the same (partial) pressure
and internal energy as in pure form, given the molar volume and temperature.
Therefore, internal energy and pressure are sums of the properties of the pure con-
stituents, and the specific (molar) internal energy is the average of that of pure
components:

Ut (V,T,y) = ZyiUf (V,T)

YV, T,y) = Zyzpz (V.T)

where superscript © refers to pure material as a reference state of mixing. This is
usually the pure material in case of mixing non-electrolites or rather small solubili-
tiy, but can be a different state when dealing with electrolite solutions, absorption,
or solid materials. (see also: 2.5.4 and 2.5.5)

At given pressure the molar volumes sum up:

Vid(p,T,y) = Zyz p,T

Entropy has a mixing contribution even in ideal mixture of perfect gases. This
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has a consequence to free energy and free enthalpy as well:
(& c
Sid — Zysz — RZyi Iny;
i i
) C c
A = Z yiA7 + RTZ yi Iny;
i i

C C
G = Zinf + RTZyi Iny;
; ;

Since free enthalpy (Gibbs energy) is sum of, and the molar free enthalpy is the
average of, the chemical potentials, the chemical potential of a component in an
ideal mixture is:

pit = pg + RT Iny;

where, according to relation (2.9) valid for the chemical potential of pure material:

w; =G5 ERTlnf—i
p

(The numerator contains fugacity of the pure component at the actual temperature
and pressure.)
Therefore, partial fugacity fi¢ of components in ideal mixture can be de-

fined as: y
/i 72 o
n *

pi* = RTIn =~ = RTIn“~ + RTIny; = RT (2.17)
p p

Thus, partial fugacity in ideal mixture is:
F = yif) = yigp

Hence partial fugacity coefficient @ﬁd in ideal mixture equals fugacity coeffi-
cient of the pure material:
) f’Ld f'o o
o=t =L oy
Yip p
In ideal mixture of perfect gases pure component’s fugacity equals the pressure,
and then the value of fugacity coefficient is unity:

id
£ =yip

O,4d _ O,0 _
Pi =@, =1

2.5.2 Real mixtures of non-electrolites

Chemical potential of a component in real mixture is also written according to
(2.17):
w; = RTIn Li (2.18)
p
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but now omitting superscript ** means that partial fugacity f; valid in real mix-
tures is applied. This is definition of f;. Pressure p* is always the reference pressure.
(This can be the actual pressure as well.) What kind of model is used to obtain
from data p—V-T—y a partial fugacity function of the same variables is essential in
practice. Partial fugacity defined by (2.18) can be derived in two different ways:

1. Instead of fugacity coefficient ¢f of pure material and fugacity coefficient
¢t valid in ideal mixture, a partial fugacity coefficient ¢; valid in real
mixture is introduced:

fi = yioip

By introducing partial fugacity coefficient ¢;, we cannot refer to ideal mixture
as a reference point. Instead, the reference is the perfect gas; the same idea
that used for pure real gases.

Partial fugacity coefficient depends not just on molar volume and tempera-
ture but composition as well. This is why it is introduced. Therefore, for
calculating partial fugacity coefficient, composition should take place in the
equation of state:

p=p(V,T,y)

The equation analogous to (2.14) is:

\%4
Ing; (V,T,y) = —/ : (M> — 1] dv—InZ (2.19)
T,(nv),n;

o0

RT on; v

where expression

n; n;
Yi= ="
n;
Jj=1

is, by definition, substituted to the place of mole fractions. Not molar volume
v but total volume nv is kept constant while differentiating; here v is molar
volume index of integration.

Applicability of fugacity coefficient depends on the applied equation of states.
Equations of states are usually based on ideas independent of composition.
Apart from a very few exceptions, like hard sphere equations, they do not
give any hint about composition dependence. The usual way to follow is
introducing composition dependent parameters. That is, should the equation
contain fitted parameters a, b, ¢, ...etc., i.e. its form is

p=p(V,T;a,b,c,...) (2.20)
then parameters a, b, ¢, ...etc. are considered composition dependent:

a=a(y), b=0(y), c=c(y), etc (2.21)
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Shape of these functons can be approximately estimated, and even calculated
for some component pairs at moderate density from the values of pure com-
ponent parameters a, b, ¢, ...etc. The approach given by formulas (2.20)
and (2.21) essentially links the actual values of parameters a, b, ¢, ...etc. to
composition y and thus forms a fictious pure material with the same equa-
tion of state (2.20) but with the such calculated parameters. That is why
this approach is also called single fluid model. It is also called model of
conformal mixtures because is is applicable to mixture of such components
only that can be modelled with the same equation of states.

2. As a measure of departure from ideality, activity coefficient ~; is intro-
duced:

fi= vl = v fy (2.22)

Since activity coefficient expresses deviation from ideal mixture, its purpuse
is to account for the effect of composition only and not for the relation p—V—
T, i.e. not for the effect of change in molar volume to the other properties of
the mixture. This is a simplification or neglection applicable to liquid mix-
tures only (and, sometimes to solid mixtures) because their molar volume is
approximately constant.

Effects of temperature cannot be neglected but, since according to experience
pressure dependence of activity coefficient at low pressure or fairly narrow
pressure domain is small, activity coefficient models usually express the effects
of composition and temperature only:

where liquid mole fractions are denoted by x to distinguish them from vapor
mole fractions y. This notation is applied all over our text.

Activity coefficient models can be derived from models of excess mixing free
enthalpy (Gibbs energy) models

APG=G -G = G—zc:xin —RTzc:xilnxi
i=1 i=1

where superscript ¥ refers to excess.

Partial fugacity coefficient and activity coefficient serve for modelling the same
partial fugacity; their values are interdependent:

vivifi = fi = yipip

Hence, activity coefficient can be calculated from equation of states, and partial
fugacity can be calculated from an activity coefficient model and a model of pure
component fugacity.
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Activity itself is a term defined as ratio of partial fugacity to the reference state
fugacity:
_ 1

=

This can be expressed as a product of activity coefficient and mole fraction:

a;

A = YiTi
Thus, chemical potential can be written this way as well:

w; = p; + RT Ina;

2.5.3 Corrections to the approximating activity coefficient

When activity coefficient is applied to express fugacity of a component in a liquid
mixture, two kinds of neglections are made:

1. Because of the form (2.23) of activity coefficient models, they do not express
pressure dependence of the coefficient. Instead, the model parameters are
determined at some reference pressure p ¢/, e.g. atmosphesric pressure. The
activity coefficient is valid at this pressure only. The fugacity calculated at
the reference pressure

fE(Tped ) = 3 (T, ) i f70 (T, pomef) (2.24)
can be corrected to the actual pressure as
FE(Top®) = fE(T, " 2) ¢ (2.25)
i.e. by multiplying it with a correction factor ¢ that in principle can be
calculated as
VA7)
4 T, T
In¢ = L d 2.2
ng— [ 2 ar (226)
paref

An equation of states would be needed to calculate correction £ but an ap-
proximation is applied instead, see below.

2. Activity coefficients are usually applied to liquids. Fugacity of pure compo-
nent in liquid form is to be computed. This is achieved so that it is first
determined at the temperature of the system and at the vapor presure of
the pure component. The pure liquid is in equilibrium with its vapor at the
systems’s temperature T and at equilibrium vapor pressure p?, thus their
fugacities are equal. This fugacity is then corrected to the reference pressure
p?rel applied in relations (2.24) - (2.26):

FOR @3 (1)) = 2V (T,p3 (1)) = Y (T, 95 (T) p5 (T)
FEA(T,poret) = nf2 " (T, p3 (1))
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where correction factor 7 could, in principle, be calculated with the following

integral:
aref
oL T
Iny = / %dw (2.27)
s

An equation of states would be needed to calculate correction n but an ap-
proximation is applied instead, see below.

Molar volumes occuring in relations (2.26) In& and (2.27) for Inn can be con-
sidered approximately constant in liquid state; thus the integral can be analytically
expressed. An additional approximation is that partial molar volume ViL occuring
in (2.26) does not significantly differ from pure component molar volume V;°L used
in (2.27); thus pure component molar volume V,°* may be substituted in the form
of In&. In this way a combined correction is obtained, called Poynting correction
after its inventor:

p
V;OL (T7 7T) (p - p;') (T)) V;OL (T7 p)
h”’g'“/ R OTF RT
D5
(p—p3) V& (T, p)

InP = AT

Partial fugacity of a component in liquid mixture is thus:
FETpa) = (T, @) aipyV (T, p7 (T)) p5 (T) P (2.28a)

or in short:

fF =yl p] P (228b)

Correcting the neglection applied in deriving Poynting correction would be cor-
retion of a correction, that is why the first corretion works well. Reference pressure
pref is cancelled out at integration; it does not occur in realations (2.28a)-(2.28b).
Thus it is not needed, but only he actual pressure and the vapor pressure of the
actual component at the systems’s temperature. Vapor fugacity is to be taken at
system’s temperature and the vapor pressure; its value is approximately unity at
low pressure (near perfect gas behaviour and no vapor phase association). It can
be neglected under 5 bar and non-associating vapor in practice.

2.5.4 Assymmetric activity reference and Henry constant

For computing partial fugacity in liquid mixture with activity coefficient, equilib-
rium vapor pressure p; of pure components as functions of temperature must be
known. This vapor pressure exists under critical temperature only. It happens,
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however, that a liquid mixture contains components with lower critical temper-
ature that the actual system temperature (non-condensing gases). Such typical
case is solution of supercitical gases in liquids, e.g. air components in water at
atmospheric circumstances.

In these cases the partial properties of the non-condensing components cannot
be related to their pure form because they do not exist in liquid form as pure
materials at the system’s temperature and pressure. Instead, we choose the other
extreme as reference state: the lack of that component. In practice this is considered
as a limit, called infinite dilution. Thus, in contrast to the so-called symmetric
convention reference applied in (2.22):

lim ~; = 1 2.2
Jim, (2.29)
we use here an asymmetric convention reference:
lim 4; = 1 (2.30)
Iig)o

The pure component reference state denoted by superscript © is substituted by the
other, infinite dilution, reference state denoted by superscript *°.

Since this convention is used just for dilute solutions, the activity coefficient
can frequently be considered as unity.

For describing solution of non-condensing gases in liquids, instead of fio’L we
apply ffO’L conventionally denoted as H;. Its name is Henry ’constant’, although
it is temperature dependent and slightly composition dependent. H; is defined as
a limit:

o= Hy = lim = =

Composition dependence of Henry ’constant’ does not mean a dependence on
the mole fraction of the actual component, being anyhow a rather small value, but
on the mole ratios of the condensing solvent components if there are more than
one present simultaneously. In the same way as at the symmetric case, the Henry
‘constant’ could be determined first at some reference pressure p® ¢/ and then the
partial fugacity would be

1 (p*rel) = 42 Hy (p*ef) (2.31)

But Henry 'constant’ is measured at some given temperature, and this temperature
determines the total partial pressure as a sum of partial pressures of all the
condensing components j. Thus, Henry 'constant’ is known at this pressure:

H; (T) = H; (P\c;j)
where

py; (T)= > ap;(T)

Vj: cond.
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(j is a running index for all the condensing components.) In spite of its small
concentration, the non-condensing gas component may give rise to large pressure
in the vapor space over the liquid, i.e. total vapor pressure py, can be significantly
different from the system’s pressure. Therefore the Henry ’constant’ measured or
calculated at temperature 7" must be recalculated from py; to the reference pressure

p?¢f occuring in (2.31):

aref

‘/;OO
RT dr

p
In f/LL (paref) = hl’% +In x; + In Hz (T) + /
pg’j
This should again be recalculated to the actual pressure p and lumping the

integrals leads to:

‘/;.OO
T

p
lnfiL (p)=In% +Inz;,+InH; (T)+ /
P\c;j

p?¢f is again cancelled, and finally:

(P - P@;-) Vi

Inff (p) ~Inz; +In H; (T) + AT

where the last member is Poynting correction of assymmetric convention.

2.5.5 Electrolite solutions. Osmotic coefficient

Concentration of electrolites, first of all in water, are conventionally expressed not
in mole fractions but in molalities m;:
2

m; = ————
" nwMw
where y is index of the solvent, letter W referring to water (Wasser), and My
is molar weight (molar mass) of he solvent expressed in kg/mol. That is, unit of
molality is (mol solute)/(kg solvent). Activity in chemical potential

Wi = M:ef + RTIna;

is now expressed in the form of
a; = '~yimi (232)

where upper tide denotes that the activity belongs to molality and not to mole frac-
tion. Reference state of the chemical potential of the solute is not pure component
but infinite dilution:
lim 4; =1 (2.33)
m;—0



2.5. Formal thermodynamics of mixtures 69

Hence activity in ideal mixture can be expressed as:
pi® = p® + RT Inm;

where superscript *° refers to state of infinite dilution.

Molality of the solvent is nonsense because it would be constant 1/My, according
to the definition. Therefore activity of the solvent is expressed in the symmetric
convention, bond to mole fractions, according to (2.29):

i = p5y + RT Inaw

Logarithm of 1 — h when |h| < 1 can be well approximated with —h:

Inzyw =1In 1—2@ %—in [=—(1—2w)]

i#EW i#=W

thus chemical potential of the solvent in the solution at low concentrations can be
written as
pi = iy — RT (1 —aw) = piy — RT Y _
i#W
The following equality is approximately true at low concentrations and exactly
satisfied in the limit of infinite dilution:

2

T, ~
nw
hence chemical potential of the solvent in dilute electrolite solutions can be written
as 1
piy =iy = RT— % mi
iAW

and Gibbs energy (free enthalpy) of such a solution as a function of mole numbers
can be written as

id o oo i
g% =n ~RT— Y ni| + [n< : +RT1H7>}
W Hw nw iAW iAW Hi nWIMW

If the solution is neither infinitely dilute or not ideal then activity coefficients
defined in relations (2.32) and (2.33), using to molality, and denoted by upper tide,
are used for solute components and a so-called osmotic coefficient ¢ is used for
the solvent:

| i = 4 + RT In (m;)

pw = iy — RT-2 3"
nw
i#=W
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o ¢ oo ’%ni
=Ny |py — RT— E il + E i | p® + RTIn ——
g =Ny |1 R - n n; | RT In

iAW iAW nw Mw

Temperature and composition dependence of these acticity coefficients and os-
motic coefficient can be derived from excess mixing Gibbs energy models.

2.6 Mixture equations of states

Hard sphere mixtures

The equations can be derived for mixtures of hard spheres of different radiuses.
Only the expression of { is changed:

G=F 3T =2 )

Conformal mixtures, mixing rules

Conformal mixtures or conformal solutions are those whose components can be
well modelled with the same form of equation of states. Let parameters a;, b;, ¢;,
etc. occur in the equation of state of each component 7, then the so-called mixture
parameters a, b, ¢, etc. occuring in the equation of states of the mixture can be
given as functions of composition and the parameters of all the components. Such
functions are called mixing rules.

Such a model can be successful if interactions between components are similar
for like and unlike component pairs.

Dimension of arameter b of cubic equations is molar volume; this parameter is
characteristic to the volume of the molecules; therefore arithmetic mean is a good
approximation, as suggested by van der Waals:

b= b, (2.34)

If the molecules do not behave as hard spheres but as if they were compressible
then parwise parameters b;; are to be introduced, e.g. like this:

= Y Sy
(]
For parameter a of cubic equations the following rule was suggested again by
van der Waals:
a= Z Z Tl Gij (2.35)
(]

where a;; is pairwise attraction parameter.
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Pairwise indexed parameters can be estimated for near ideal mixtures; several
suggestions are known for them. For example, b can be estimated by quadratic or

cubic mean: )
by — < Vbi + \/E>
EAN U

3
< Vbi + 3/ bj)
i = | %
2
or some similar estimation. Applying arithmetic mean gives rise to rule (2.34).
The usual estimation parameter a is

aij = aiaj

(although other forms could also be used here). If the mixture behaves a bit differ-
ently then the cross-effects can be taken into account with a so-called interaction
parameter k;;:

aij = (1 — kij) Jaia; (2.36)
This interaction parameter is fitted to measurement data.

For computing phase equilibria, effects of composition is especially important.
Therefore several suggestions are known for describing composition dependence of
the interaction parameter. Such suggestions are, for example:

kij = kjj +m(zi — ;)
kij = :L'ihij + :cjhji
hi iL; — h ii L4
kii = kS 4 myi(wy + @) L9
“ " * ”( it ])hijxi + hjixj

The latter one proved be a good rule for calculating vapor-liquid equilibria of
ternary systems.

Another technique for describing composition dependence is application of so-
called local concentrations by modifying rule (2.35):

a = E E TiWji Qg
g

Form of the departure functions necessarily change with the applied
mixing rules. For example, if rules (2.34) and (2.36) are applied in the vdW
equation of states (2.15) then the form of fugacity coefficient is

V—-b bz 2 a;
- )+V—b_Vg;[xj(1_kij)ﬁ}

Inp; =—1In (Z
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Virial equation can also be given in mixture form but applying the idea of
conformal mixtures is easier. The second virial coefficient can be given like (2.35):

By(T)=>_ Z 225 B2,i;(T)

%

2.7 Mixing excess models

Excess properties and activity coefficient are linked by the following general ther-

modynamic relation:
AE
RTIn~ — (M)
8ni T,p,ﬁ

According to a widely applied idea, density dependence of excess Gibbs energy
can be neglected in first approximation because liquid density dependence on pres-
sure and temperature is much smaller that that of gases. In this case mixing Gibbs
energy excess can be approximated by mixing Helmholtz energy excess. Both are
related to mixing heat and spatial arrangement of molecules. Mixing heat is caused
by interaction of unlike molecules being diferent from interaction of like molecules.
Spatial arrangement means that concentration of molecules of different kinds can
be different around a molecule of a kind, although the multitude of molecules are
arranged in the space with homogeneous density. This concentration in the neigh-
borhood of a selected species can be perfectly uniform (random arrangement) or
something else (partially or perfectly ordered arrangement). Perfect order cannot
occur in liquids (but is achieved as an average in crystals).

2.7.1 Numerical expansions

According to a possible approach, excess free enthalpy is determined by ratios of
so-called effective molar volumes ¢;. This is quantity proportional to co-ordination
number; it increases with the diameter of the molecules bot not necessarily pro-
portionally. By weighting these effective molar volumes with mole fractions one
obtains effective volume fractions:

Lidi

@.
T
J

According to Wohl (1946), the excess can be expanded according to these fractions:

AEG
RTZ%“I%‘ %: J J %k: Jk J¥k

where besides effective volume fractions, interaction parameters a of two, three,
etc. indexes are to be fitted to measurement data. Stopping at three indexes, the
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equation for binary mixtures is:

AEG

T (qaza + qpr)(2PAPpasp + 304 Ppasap + 3P AP%a455)

or by transforming the parameters:

AEG

7T Apap®iaa + Apa®iap

Ratio of effetive molar volumes can be estimated. By approximating ¢p/qa with
Apa/Aap, one obtains equation (2.38) of van Laar. By approximating ¢g/qa with
the ratio of real volumes Vi /Vy4, one obtains Scatchard-Hammer equation (1935):

Inys =0% |:AAB +2Dy (ABA/;—j - AAB)]

Inyp =®% [ABA +2dp (AABZ_;: - ABA)]

By approximating qg/qa with 1, one obtains Margules equation (1895):

Inya =2% [Aap + 224 (Apa — Aap)]

Margules: Invyg :xi [ABA + 2zp (AAB — ABA)]

In contrast to the above models Redlich and Kister (1948, 1952), after Guggen-
heim, applied a mathematical expansion without any physical reasoning. For binary
mixture:

AFG 2 3

T = %A%B Aap+ Bap (va—2B)+Cap(xa—2B)"+ Dap(xza — 1) + - }
(2.37)

For multicomponent mixture the series is similar but contains much more param-

eters to be fitted to measured data.

2.7.2 Derivation from equation of states

Van Laar derived a formula for excess free energy from the van der Waals equation
of state (2.15):

A 2
Inya = ABTp _
Aap
A—J?A +xp
van Laar: BA ) (2.38)
1 - ABA{EA
nyp = 1 5
(xA + A—jAQTB)
B

This model is based on rather rough assumptions. Calculating parameters A4 p és
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Apa does not give good results; they must be fitted to measured data instead. In
that case the equation serves as a good model in many cases and can be used for
calculating phase equilibria.

2.7.3 Lattice (grid) models

Liquid structure is similar to crystal structure because of high liquid density. Partial
ordering of the molecules in short distances can be observed. Liquids are similar to
gases, t0o, in attenuation of spatial ordering in larger distance and in fast change
of location of molecules, but similarity to crystals is stronger. Thus, liquids can
be modelled as if they were solid. Location of molecules can be modelled as whole
multiples of a given distance (grid spacing). As an approximation, only interaction
between neighboring molecules is taken into account in lattice models. Number
of neighbours is called co-ordination number; this can be different for different
species in the lattice, and ratio of molecules of different species can also be different.
As an approximation, internal state of the molecules is considered independent of
the kinds of neighbours, and thus change of free energy is a consequence of spatial
rearrangement only, i.e. of changing the number of interacting molecule pairs of a
given pair of species.

Mixture of equal size molecules

This is the simplest case. Co-ordination number is the same in the pure material
and in the mixture. The spatial lattice is illustrated in Fig. 2.5 as a square plain
lattice with co-ordination number z = 4. (Diagonal neighbours are not counted.)

—é—o—é—o—o—
—é—w—$—>—o—
SRS T
—é—>—$—m—o—
—%—o—%—o—o—

Figure 2.5: Square plain lattice with components A and B

Consider, for simplicity, binary liquid mixture consisting of N4 molecules of
kind A, and Np molecules of kind B. Then spatial arrangement of molecules in
the lattice determines the pair numbers Na4, Nppg, and N 4p; thus, the interaction
energies ua4, upp, and uap of pairs can be summed up to obtain lattice energy.
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Random arrangement (zero-th approximation by Guggenheim) This ap-
proximation assumes that spatial arrangement is independent of pair energies (Guggen-
heim, 1952). Evidently this cannot be exactly true; and can be applicable only if
the pair energies are rather similar (near ideal mixture). According to the model,
probability of locating a molecule at a gird point is independent of the kind, but
probalility of finding a kind A in a grid point is proportional to the number of
molecules of kind A. The mixing excess is obtained as:

APG ~Wazaxp (2.39)
Hence the activity coefficient is:

W%

=ex
YA =€Xp RT
Wz

=ex
B = €Xp RT

This is the simplest theoretical model based on combinatorics. Relation (2.39) is
also considered as an interpretation of the first member of Redlich-Kister expan-
sion.

Non-random arrangement, quasi-chemical model (first approximation by
Guggenheim) Non-randomness is measured by a parameter x:

. NaNp
Nap =2 "Ny
K :NIZB(NA + NB)
- ZNANB

According to the quasi-chemical model (Guggenheim, 1952), pairing of molecules
is considered as a weak chemical reaction, and the low of mass action can be applied
(with a quasi ’chemical’ equilibrium ratio):

N3g . < 2w )
= ex _——
(ZNA—NAB)(ZNB—NAB) P ZRT

In case of binary mixtures, the equation is quadratic in N4p and can be solved

analytically:
2 2w \ 1\
—=1 144 -1 —_—
= (e [ e (7))

and hence the excess is

1- 1-
APG ~ BT (waln =2 4y T

TA TB
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z. 1—krxp
Inyg =—ln——

2 TA

z.  1l—kKxa
Inyg =—In ——

2 TB

In case of multicomponent mixtures the pair numbers cannot be analytically
expressed; they must be determined numerically.

Mixture of different size molecules

The molecules are considered as consisting of several like or unlike but equal sized
building segments. For example, n-hexane is built up of 6 almost equal segments
if the difference between gropus CHs and CHs is neglected. A molecule of 2-
propanone (dimethyl-ketone or acetone) is built up of three segments: two CHj
groups and one CO group. These groups or segments (e.g. CHs, CO, NHy, COO)
take place in the grid points. Flexible molecules can take up different shapes in the
grid. For example, a molecule of three segments can take a straight or a broken
shape.

Figure 2.6: Three-segmented molecules AAA and BBB in the lattice

The number of possible neigbouring segments can change with the shape. For
example, a straight three-segment molecule has 8 neighbours whereas there are only
7 for a broken one, see Fig. 2.6. This number depends on both size and shape of
the molecule, and constitutes an additional property besides the grid co-ordination
number z.

Spatial arrangement and randomness - non-randomness is more difficult to
model for molecules of different size that those for equal size. To overcome the
problem, the effects are decomposed to a part describing effect present in random
arrangement and another part for those effects due to non-random arrangement.
There is a combinatorial (or athermal or thermoneutral) part and a so-

called residual part:
APG=AE G+ AE.G (2.40a)
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Iny; = Inyfmb 4 InAres (2.40b)

In case of molecules consisting of uniform segments (homogeneous
molecules), the following form can be derived for the athermal (combinatorial,
k = 1) part:

b, z P,
AE = RT ;n—+ = ;i In — 2.41
combG = R <§;x nxi+2§i:qx nei ( )
(0¥ o, =z (0¥ (0¥
Inyfomt =1—- L 4In——Z¢(1--"L4In—-—"
Il’)/z X, * nxi 2(] < 91 +n 97,)

Here @; is a so-called segment fraction, and 6; is a so-called surface fraction, where
r; is the number of (homogeneous) segments in molecules of kind i:

€T;Tr;

2Ty
J

o, (2.42)

= (2.43)

For estimating the residual part, the form of the quasi-chemical equilibrium is

Nip — ox 2w (2.44)
(2Naga — Nap)(2Npqs — Nap) P\ ZRT '

Hence the residual part can be derived for a binary mixture:

z 1— k0 1— k0
AfesG ~ RT§ <$AQA In TB +2zpgpln TA>
In~res =2 mﬂ
YA —2(]A 0
s Z 1— k04
Invg" :EQB th

where x is expressed from the quadratic equation (2.44).
Molecules consisting of uniform segments are usually fictious; they are mostly
simplified, averaged, models of real, inhomogeneous, molecules.

In case of molecules of different segments (inhomogeneous molecules),
relative frequencies of occuring different segment pairs ought to be taken into ac-
count. That would be so difficult that group contribution models are used instead
(see section 2.7.5).
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Figure 2.7: Cellular model: cells around A and B

2.7.4 Cellular (two-liquid) models

If distribution of species around A is independent of that of B then the distribu-
tion is uniform (random), otherwise there is some kind of spatial ordering. This
approach can be maintained even if no lattice is applied. One can consider distribu-
tion of different species in a small neighbourhood of a randomly selected molecule
of species A, and analyze it statistically. The same can be done around a molecule
of species B. Thus, there are cells with center A and cells with center B (figure
2.7). A cell with center A consists of a central molecule A and a shell containing
both A and B molecules, and the central molecule A moves in the potential field of
the shell. The cells overlap since any molecule A or B in the shell can be considered
as a center of another cell. However, properties of the mixture is modelled as if it
were be an ideal mixture of independent A and B cells; that is why it is also called
two-liquid model.

Distributions of kinds around different centers can be different from each other
and from the gross composition of the mixture. This is expressed with the term
local composition. In case of perfect randomness the distribution of species
around the centers is independent of the center; and thus the local mole fractions
equal the gross mole fractions. Particular models are invented according to the
assumptions made on local compositions like local mole fractions or local volume
fractions. If interaction potential of AA is lower than that of AB then one may
expect larger fraction of molecules A around a center A than the gross (average)
fraction, etc.

Mixture of equal size molecules

In case of perfect randomness the number of pairs N5 equals the numbers Nyp
and Np,4 in the cells; thus

NyNp

N :N* :N = —_—
AB AB BA ZNA+NB
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After a tedious derivation one gets

AEG ~ AEA = RT% [J,‘A In (.13,4 + J)BABA) +2zpln (xB + JTAAAB)]

5 z Apa Aap
In =— _—zxln(x +x A + 5z o
YA B A ( A B BA) D) B [xA-i-xBABA :L’B+CL'AAAB:|
. z AaB Apa
B 5B (@5 +2a44B) 974 [$B+$AAAB $A+xBABA}

Mixture of different size molecules

(Wilson, 1964 ) suggested to calculate the ratio of volumes occupied by the molecules
from ratio of Boltzmann factors. With additional assumtions he got:

AGE
BT :—J,‘Aln(xA+AABJ)B)—$31D($B+ABA$A)
Wilson, binary:
Aap ABa
1 =—1 + A + —
oA n(ea ABTB) lmg(xA‘FAABxB xB—%ABAxA)
Apa Aap >
In =—In(zgp +Apaza) +=x —
B (@5 pAT4) + 24 <$B+ABA$A A+ AapTB

Its multicomponent version is

. AGF
Wilson: N7 ;xz lnzj: Ajjx;
W.l . _ Akixk
1ison: hl’}/i——hl ZA”CI}‘] +1—ZT
j k ; ij]

where

Aij = exp (—7%1' R_Tujj>

In practice, parameters A;; = wu;; — uy are fitted to measured data. There
are versions of Wilson model, like that of three parameters, a version related to
enthalpies etc., but the two-parameter version is the one widely known and applied.

Renon és Prausnitz (1968) applied enthalpy in Boltzmann factors, and an ad-
ditional parameter o measuring non-randomness. They nicked it as ’Non-random
two-liquid model’, or NRTL. Intruducing notations
9ij — 9jj

RT

Tij =
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Gij = exp (—OéijTij)
the equation looks as
ZTﬂ §iTj

NRTL: AG _ sz
Z Grizk

ZTJZG]Zx] Zijijxm
m

Gi:x
NRTL: In~, = L} Fa_m
i zamxk Zzawk TS Gy
k

Its parameters to fit are A;; = g;; — gj; and «, but o is usually fixed at about 0.2
- 0.3.

Prausnitz and co-workers (1975, 1978) applied decomposition to combinatorial
and residual parts ((2.40a)—(2.40b)). They used equation (2.41) for the combina-
torial part, and the quasi-chemical approximation of Guggenheim to the residual
part. Their model is called UNIQUAC (universal quasi-chemical model) because
it incorporates most of the known other models, i.e. they can be derived from this
one with appropriate substitutions. Its form is:

UNIQUAC:
AEG AE)mbG + AreGG
combG RT <Z X n — + Zqle In — )
AGE,
R—%& = —zi: giv; In zj:Tjiej
In v = In ,ycomb + hl res
P, oz P, P,
1 comb _ 1 _ 2% 1 _’L —Za 1= ikl 1 ikl
n-; xi+nxi 2q1( 9i+n9i)
TkiOk
e =g [—In [ S 70 | +1-3 =ik
= (S | 1o S
J
where

_ Ug; — Ugg
Tji = €XpP —T
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An alternative form of the combinatorial part is:

P, =z P, P,
comb __ ? . ? Lt § 7.
ln’y’i =1In —mi — iqz In —91 + ll I : lej
where .
l; = 5(7”1—%')—(7%‘—1)

(z is co-ordination number.)

Material parameters r és ¢ of UNIQUAC belong to components; these param-
eters are fairly independent of what kind of mixture is the actual component in.
Co-ordination number z is usually taken as 10, and parameters A;; = uj; — u;; are
fitted to data.

Modeling mixtures of heterogeneous molecules is difficult in the same way as
discussed at lattice models. Group contribution models are used instead.

2.7.5 Group contribution models

Different segments in a heterogeneous molecule are characterized by different vol-
ume (R) and surface (Q). Apply index k to distinguish between segment types in
the molecule, and denote the number of segments of type k£ in molecule 7 with vy;;
then volume and surface of molecule 7 can simply be defined by

ri = Z vii Ry (2.45a)
K

k
Total surface of segments k& in molecule 7 is
Qi = vkiQk

Group contribution models refer to atomic groups in the molecules that can
be characterized with uniform, molecule-independent, R and @ values, and in-
teractions between these groups also independent of the actual molecule they are
found in. Such groups can be, for example, CHs, NHy connected to an aliphatic
chain, CO, OH, COO, aromatic ring, etc. Of course, behaviour of these groups
depend strongly on the other groups they are in direct contact or simply near to
them; thus, their independence is fictious. However, good approximation is ob-
tained in many cases by applying universal group properties R and @. Although
these groups are environment-dependent, their application makes possible a more
detailed characterization of the molecule than by applying models of homogeneous

molecules. The uniform parameters Ry, Qk, and Ay, are fitted simultaneously to
data of many equilibrium mesaurements made on several different mixtures.

Wilson és Deal (1962) defined the principles of the method of so-called group so-
Iutions. The system is considered as a mixture of functional groups. The principles
are as follow.
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1. Activity coefficient is expressed as product of combinatorial and residual
parts:
In v = In ,ycomb + ln res

2. Functional group k increments -y; of each component ¢ by a term dependent
on composition and temperature but independent of i. The increments
Iy, are taken as functions of temperature 7" and group fraction w:

> ki
7
Wy = —=—
220 Vmili
T m

Fk = fk (waT)

3. For computing the resisular part, the residual effects in pure components
are subtracted from the rsidual effects in the mixture

In~/%* = Z Vki (ln I'y —In I‘?)
k
where superscript (i) refers to pure component i:

D= i (w(i);T>

(’L) Vi

Z Vmi

A model named ASOG (analytical solution of groups) was developed on these
principles but it, unfortunately, could not gain ground. However, Frendenslund
and co-workers (in several articles from 1975) applied UNIQUAC in following the
same principles to develop a new model they nicked to UNIFAC:

UNIFAC:

D, D, D,
In~fomb = 1n;z — %qiln# +1; - x—z ijlj
(2 3 3 ]

lizg(ﬂ—qz')—(ﬂ—l)

where co-ordination number z is taken as 10, the volume and surface fractions ®
and 6 are defined by (2.42) and (2.43), molecule properties r és ¢ given by relations
(2.45a) to (2.45b). The residual part is:

\I’m m
InT5e = Qy —1n<2\1/mk@m>+1 ZZE o
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where indexes m és n run on groups, and the surface fraction is:

W Qm
0, = Lm&m_
> wnQn

and Boltzmann factor is computed as

W,m = exp (—IZL;)

UNIFAC is widely used in practice. Its parameters are group properties Ry and
Q1 and group interaction parameters A,,, # A,.,. Several parameter sets are in
use. A common property of them is that the first members of homologous series do
not fit well to the measured data if the general groups are applied; therefore special
groups has to be defined for describing these first members. For example, longer
alcohols containing hydroxil groups connected to methyl and methylene groups
are described well with these groups but methanol cannot be described this way;
methanol has to be considered a separate group.

2.7.6 Models widely applied in practice, and their capability

The most applied and suggested models for which fitted parameters are available
in the literature are van Laar, Margules, Wilson, NRTL, UNIQUAC, and UNIFAC.
Several similar equations exist but they are applied most. Common in them
that parameters fitted to binary vapor-liquid equilibria can be applied to calculate
multicomponent vapor-liquid equilibria as well. NRTL and UNIQUAC can be suc-
cessfully applied to liquid-liquid equilibria, too, but frequently the parameters fitted
to vapor-liquid equilibria cannot be used to liquid-liquid equilibria and vice versa;
separate data set must be applied. The two-parameter Wilson equation cannot be
applied to model liquid-liquid equilibria because its form excludes concave AFG
functions. For calculating ternary liquid-liquid equilibrium, one cannot use binary
interaction parameter values because in many cases some species pairs do not have
such data. For example, there is not liquid phase separation between water and
ethanol and between ethanol and benzene, and thus ternary data are needed for
fitting parameter to ternary mixture water - ethanol - benzene. Those parameters
can then be used to calculate multicomponent mixtures. UNIFAC serves with good
approximation in some cases, but rather rough estimations in other cases.

2.7.7 Electrolite solutions

All the models explained above are for non-electrolites. Modeling electrolite solu-
tions is much more difficult. There are well behaving models but we do not treat
them here.
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2.8 Phase equilibrium calculations

2.8.1 Vapor liquid equilibria

Equilibria of mixtures is more coplex than that of pure materials because compo-
sition of the phases in equilibrium are different.

Phase relations of binary mixtures can be visualized in plain because the mole
fraction of one component determines the mole fraction of the other one in the
same phase. Phase diagrams (or phase plots) are drawn for constant pressure or
constant temperature as are shown in Fig.s 2.8 and 2.9. In these figures mole
fractions of the more volatile component (i.e. of the higher vapor pressure and
lower boiling temperature) are measured on the horizontal axes. That is, the point
of x =1 and y = 1 is the place of pure more volatile (light) component, and the
point of x = 0 and y = 0 is the place of pure less volatile (heavy) component.

Simple equilibrium calculations problems

We speak about simple equilibrium calculations if the composition of one of
the phases (x or y) as well as one of the intensive state variables (T is p) is given,
and values of the other variables as assigned by the phase curve or phase surface
(or hypersurface) are to be found.

T p=const. p T=const.
Tp N
pPB Vv

a/ L c/

0o x gy 1 z,y 0 Yy 1 z,y
Y Y

1 1
y* y*
b/ d/
0 0

0 = 1 =z 0 T 1 =z

Figure 2.8: Bubble point in phase plots and equilibrium plots
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Curves of equilibria at constant pressure p are shown in Fig.s 2.8a-b. Given
a liquid composition z, the vertical projection line intersects the lower (liquid)
phase curve at heigth of its buble point temperature Tg. The horizontal projection
line from this intersection intersects the upper (vapor) phase curve over the vapor
composition y* that keeps equilibrium with z.

T p=const. p T'—const.
) N
PD V

a/ L c/ 2

0 ¢y 1 zy 0 Yy 1 zy
Y Y

1 1
Y Y
b/ d/
0 0

0 z* 1 =z 0 x* 1 =z

Figure 2.9: Dew point in phase plots and equilibrium plots

Curves of equilibria at constant temperature 7' are shown in Fig.s 2.8c-d.
Given a liquid composition z, the vertical projection line intersects the upper (lig-
uid) phase curve at heigth of its buble point pressure pg. The horizontal projection
line from this intersection intersects the lower (vapor) phase curve over the vapor
composition y* that keeps equilibrium with z.

Inversely:

Given a vapor composition y (Fig.s 2.9a-b) at constant pressure p, the vertical
projection line intersects the upper (vapor) phase curve at heigth of its dew point
temperature Tp (). The horizontal projection line from this intersection intersects
the lower (liquid) phase curve over the liquid composition z* that keeps equilibrium
with y.

Given a vapor composition y (Fig.s 2.9c-d) at constant temperature T, the
vertical projection line intersects the lower (vapor) phase curve at heigth of its
dew point pressure pp (). The horizontal projection line from this intersection
intersects the upper (liquid) phase curve over the liquid composition z* that keeps
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equilibrium with y.

In case of multicomponent mixtures the equilibrium points assign surfaces and
hypersurfaces; the task of searching for the intersection points is more difficult and
usually is performed with numerical iterative calculations, but there are just these
four calculation tasks: determine bubble point temperature, dew point temper-
ature, bubble point pressure, and dew point pressure, each with the equilibrium
composition of the other phase.

Phase distribution (flash) calculation problems

We speak about Phase distribution (or: ’flash’) calculations if gross composi-
tion z of the mixture and one or more intensive thermodynamic state variables are
given and total state of the system, including compositions and ratio of the sepa-
rating phases format at the given state variables are to be found. Combinations of
compositions and temperature at given pressure are shown in Fig. 2.10. Location
of point p-T-z in the phase diagram does not give us all possible knowledge on
the state of the system. As changing T or p involves shifting point p-T-z in the
diagram, so change the system’s gross molar energy, enthalpy, entropy, free energy,
and Gibbs energy as well. Conventionally ¢ is used to denote the so-called heat
state on condensation degree of the material at composition z and given intensive
variables. This measures with how many times of the molar condensation (vapor-
ization) heat does the molar enthalpy of the material deviates from its value at dew
point. Thus, its value is ¢ = 0 at dew point, and ¢ = 1 at bubble point.

The calculation problems shown in Fig. 2.10 can also be interpreted according
to Fig. 2.11

Given the gross composition z, pressure p and temperature 7', we search for
the equilibrium state of the system, i.e. whether it is liquid, gas, or forms two
phases and, in the latter case, in what ratio, and what compositions are there in
the phases, as well as what molar enthalpies (not shown in the figure) are there in
the system and in the phases. This is, however, only one of the possible problem
kinds. Instead of pressure or temperature, molar enthaly may be given, and the
missing prssure or temperature might be a variable to determine.

Only a part of possible flash probles are nterpreted in Fig. 2.11; more general
interpretation is shown in Fig. 2.12. Flash originally means the operation that
the pressurized liquid is heated up and let through a throttling valve to suddenly
vaporize.

Flash problems can be of various kinds. One can specify demanded phase ratio,
needed mole fraction of a component in one of the phases, recovery ratio and so on.
Therefore, all equilibrium calculations are, in wide sense, called flash calculations.

Typical flash probles are listed in Table 2.1. Here J is molar enthalpy of feed,
h is liquid molar enthalpy, H is vapor molar enthalpy, f; and v; are component
molar flow rates in feed and vapor, respectively.
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Figure 2.10: Flash problem in phase plot

Figure 2.11: Static flash problem
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Figure 2.12: Steady state flash problem

Table 2.1: Typical flash problems

Given (specified) | Looked for Notes

z,p, T J,V/L,x,y, hy H isothermal-isobaric  ("isothermal’)
flash

z,p, J T,V/L,z,y, h) H isobaric-adiabatic (’adiabatic’)
flash

z, J, T p, V/L,x, y, h, H isothermal-adiabatic flash

z,p, V/L, J T, x,y, h, H temperature for phase ratio

z, T,V/L, J p,x,y, h, H pressure for phase ratio

z,p, T, J T,V/L,z,y, hy H for given purity

z, T, x;, J p, V/IL,x,y, h, H for given purity

Z, D, Uiy, J T,V/L,x,y, h, H for given purity

z, T,y J p, V/IL,x,y, h, H for given purity

z, p,vi/fi, J T,V/L,x,y, h, H for given recovery

z, T v/ fi, J p, V/IL,x,y, h, H for given recovery

Z, Yi, Ui/fi: J

p7 T7 V/L7 w’y’ h7H

for given purity and recovery
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2.8.2 ¢/p, p/v and v/~ methods

When comparing fugacities of two phases, they can be modelles in three possible
combinations:

1. ¢/ method: If both phases are modelled with equation of states then (the
common) pressure is cancelled algebraically:

yivel =yllel! (2.46a)
Fugacity coefficient in each phase is calculated at the given (common) pres-

sure and temperature and at the composition of that phase. Then the
equilibrium ratio is:

KH/I_inI _ 9051 _ Inol! —1no! 2.46b
; :ylfsplzexp(ngai —napi) (2.46h)

In case of vapor-liquis equilibrium the equation’s form is:
yie] = wipl (2.46¢)
where y; mole fraction in vapor, z; is mole fraction in liquid, and

. L
KiEKiV/LE&:%Eexp(ln¢f—ln¢Y) (2.46d)
Z; {2
2. ¢/~ method: If one of the phases is modelled with equation of states, and
the other one with mixing excess model then the forms are different at the

two sides:
yiel p = Yizipip; P (2.47a)

The right hand side is applied to a condesed phase, usualy liquid, otherwise
vapor pressure p; has no meaning. The left hand side is applied to a vapor
phase. Partial fugacity coefficient in the left hand side is taken at the system’s
pressure and temperature and at vapor composition y. Activity coefficient
in the right hand side is taken at the systems’s temperature and at liquid
composition x; there is a vapor pressure of pure component i at systems’s
temperature, preceded by a fugacity coefficient of the pure component’s vapor
at the same vapor pressure and the system’s temperature, and there is the
Poynting correction. Equilibrium ratio is then:

K= Y _2wipiP (2.47b)

Zi 901‘-/ p
3. v/~ method: If both phases are modelled with mixing excess then vapor

tensions and corrections are algebraically cancelled out:

vy =l (2.48a)

(2
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Activity coefficient in each phase is taken at system’s temperature and the
phase’s composition x. Equilibrium ratio is then:

KII/I — xi‘U — ’yi_H = ex (ln 11 —In I) (2 48b)

(2 (2

Methods ¢/¢ and ¢/y can be used for modelling vapor-liquid and liquid-liquid
equilibria as well, but method ~/v to liquid-liquid equilibria only. Application of
methods ¢/ and ~y/~ are clear and straightforward. In contrast, method ¢/~ con-
tains so many different variables and models that usually, if possible, its simplified
versions are applied. At moderate pressure, and if no components associating in va-
por phase are present, partial fugacity coefficient at the vapor side is omitted; thus
the vapor is considered as ideal mixture of perfect gases. Poynting correction and
fugacity coefficient of pure component vapor are usually omitted in the liquid side
at moderate temperatures. Thus we obtain the so-called modified Raoult-Dalton

equation:
Yip = Vi%ip; (2.49a)

K=Y = 0P (2.49b)
T p
All equations (2.46a)-(2.49b) are expounded versions of the general necessary
condition
f{:fz]] (i:1,2,...,0)

where ¢ is number of components.

Composition of one of the phases and one intensive state variable (T or p)
is given in simple equilibrium calculation problems, and the other intensive state
variable is looked for together with the equilibrium composition of the other phase.
That is, the number of unknown variables is ¢+ 1. But the unknown mole fractions
must add up to 1; thus the number of unknowns is decreased to c¢. In case of a 5-
component mixture, for example, the problem is finding the zero(s) of a 5-variable
system of equations. In case of phase distribution problems, the specified data are
an intensive state variable or two of them besides the gross composition, and the
variables looked for include mole fractons of both equilibrium phases; therefore the
number of unknowns is even higher.

It does not follow, however, that we really have to solve a system of equations
by numerically iterating in ¢ or even more variables, because the equation system
can be transformed to a function of much less variables, see below. The numerical
search methods can be selected arbitrarily, but the procedure shown below are
simple, clear, and easy to perform.
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2.8.3 Vapor-liquid equilibria with ¢ /v
Ideal mixture

In this case the equilibrium ratio does not depend on composition but temperature
and pressure only:
pc.’
Ki = K’L(Tap) ==t
p
where vapor tension is function of temperature. The equilibrium calculations are
very simple. The simplest one is finding bubble point pressure at given temterature:

Algorithm BP-id: Bubble point pressure

Given: temperature T and liquid composition x

Looked for: bubble point pressure pp and equilibrium vapor composition y
Guess: -

1. Compute vapor pressures p; using known vapor pressure curves.
2. Compute total pressure pp:

pB < Y T}
7

3. Compute equilibrium vapor mole fractions:

5P
PB

Yi <=
4. Stop.

This is simply a series of substitutions; no iteration is here. In each other
problem some iteration is to be applied, but not here.

Algorithm DP-id-a: Dew point pressure

Given: temperature 7" and vapor composition y

Looked for: dew point pressure pp and equilibrium liquid composition
Guess: pp is estimated with an appropriate p.

1. Compute vapor pressures p; using known vapor pressure curves.
2. Compute liquid mole fractions:
T; <= %

i

3. Compute sum of the obtained liquid mole fractions:

U@in
A
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4. Normalize the mole fractions:
"y
T; <= =
o
5. Compute bubble point pressure to the calculated liquid composition:

PB < Z z;p;
i

6. If estimated p and calculated pp are equal up to a predefined small error
then the estimated pressure p is accepted as a dew point pressure: pp < p,
and stop.

7. Otherwise: Modify p, and return to step 2.

The above algorithm can be re-formulated as follows:

Algorithm DP-id-b: Dew point pressure

Given: temperature T' and vapor composition y

Looked for: dew point pressure pp and equilibrium liquid composition x
Guess: pp is estimated with an appropriate p.

1. Compute vapor pressures p; using known vapor pressure curves.
2. Compute equilibrium ratios K;:

3. Compute liquid mole fractions:

4. Compute sum of the obtained liquid mole fractions:
o <= Z T
i
5. Normalize the mole fractions:
"y
T < =
o

6. If estimated o equals 1 up to a predefined small error then the estimated
pressure p is accepted as a dew point pressure: pp < p, and stop.
7. Otherwise: Modify p, and return to step 2.

If the caclucated pressure is higher than the estimated one, or the calculated sum
of mole fractions is higher than 1, then the estimated pressure must be decreased,
otherwise increased. This is so because too high calculated pressure means too high
mole fractions of the volatile components in the liquid.
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Algorithm BT-id-a: Bubble point temperature

Given: pressure p and liquid composition x

Looked for: dew point temperatureT’sz and equilibrium vapor composition y
Guess: Ty is estimated with some appropriate T'.

1. Compute tensions p; at temperature 7.
2. Compute partial pressures:
Pi <= Tp;

7T<:Zpi
i

4. If 7 equals p up to a predefined small error then accept T as bubble point
temperature: Tp < T', and go to step 6.

5. Otherwise: Modify T', and return to step 1.

6. Compute vapor mole fractions:

3. Sum up partial pressures:

yi<:&
T

Stop.

If 7 < p then T must be increased, otherwise decreased. The above algorithm
can be re-formulated as follows:

Algorithm BT-id-b: Bubble point temperature

Given: pressure p and liquid composition x

Looked for: dew point temperature7s and equilibrium vapor composition y
Guess: Ty is estimated with some appropriate T

1. Compute tensions p§ at temperature 7.
2. Compute equilibrium ratios:

(o]
Ki<:&
p

3. Compute vapor mole fractions:
yi <= Kix;

4. Sum up vapor mole fractions:
0 <~ Z Z;
i

5. If o equals 1 up to some predefined small error then accept T as bubble
point tempereture: T < T, and go to step 6.
7. Otherwise: Modify T', and return to step 1.
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6. Normalize vapor mole fractions:
.
Stop.
If 0 < 1 then T must be increased, otherwise decreased.

Calculating dew point temperature is done is a similar way.

Non-ideal liquid phase

The relations are supplemented with acticity coefficient. Since this depends on
liquid composition and temperature, bubble point calculations are easier that dew
point calculations. Bubble point iterations are simply supplemented with a step
for calculating ;.

Algorithm BT-v: Bubble point temperature

Given: pressure p and liquid composition x

Looked for: dew point temperatureT’sz and equilibrium vapor composition y
Guess: Ty is estimated with some appropriate T'.

1. Compute vapor pressures p; at 1" and activity coefficients y; at T and x.
2. Compute equilibrium ratios:

3. Compute vapor mole fractions:

4. Sum up vapor mole fractions:
o = Z x;
i

5. If o equals 1 up to some predefined small error then accept T' as bubble
point tempereture: Tp <= T, and go to step 6.
7. Otherwise: Modify T', and return to step 1.
6. Normalize vapor mole fractions:
T4

T; &= —
g

Stop.
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If 0 < 1 then T must be increased, otherwise decreased.

Algorithm DT-vy: Dew point temperature

Given: pressure p and vapor composition y

Looked for: dew point temperature Tp and equilibrium liquid composition x
Guess: Tp is estimated with and appropriate T'; ; is estimated with 1.

1. Compute tensions p at temperature 7.
2. Compute liquid mole fractions:
Yip

T; <= S
YiD;

3. Sum up liquid mole fractions:
0 <~ Z Z;
i

4. Normalize liquid mole fractions:
T
T <= =
o

5. Compute ~; at T" and the normalized liquid mole fractions.
6. Compute total pressure over the calculated liquid composition:

T = Z Yi%ip;
i

7. If p equals ™ up to a predefined small error then accept T' as dew point
temperature: Ty < T, and stop.
8. Otherwise: Modify T, and return to step 1.

If m < p then T must be increased, otherwise decreased.

General case /v

If composition dependent property, like fugacity coefficient, turns up at vapor side,
i.e. there is such a thing at both sides, then embedded iteration cycles are needed
in the calculations, the same way as in the next subsection.

2.8.4 Vapor-liquid equlibria with ¢/

Figacity coefficients must be computed at the system’s pressure and temperature, at
the composition of the actual phase, and with the properly selected molar volume
root. If bubble point is calculated then the smallest one must be selected from
the (at most) three roots, and the highest root cannot be used for computing
fugacity coefficient of the vapor phase because that root must be calculated at
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vapor composition, not liquid composition. For computing vapor phase properties,
first you have to estimate vapor composition y and use this data to find the roots
and then calculate vapor fugacity coefficient. The situation is just opposite at dew

point calculations.

Since the models for liquid and vapor are equal, the four problems’ calculation

procedures can be lumped.

Algorithm BDTP-¢: Equilibrium calculation with /¢

Given: (T or p) and (liquid or vapor) composition y! (folyadék vagy para)

Looked for: (p* or T*) and (vapor or liquid) composition y!f

Guess: (p* or T*) is estimated with some appropriate (p or T); ¢! and p!! are

estimeted with 1 or some more precise method.

1.
2.
3.

11.

Compute fugacity coefficients in the given phase ¢!.
Set counter n as n < 0.
Compute equilibrium ratios:

I
Pi
17
i

K, <

. Compute equilibrium mole fractions in the other phase:

yll < Kyl

. Sum up equilibrium mole fractions in the other phase:

oYl
%

. Normalize equilibrium mole fractions in the other phase:

II
ylt = Y

Compute fugacity coefficients in the other phase o!7.

. Compute equilibrium ratios:

I

¥
I9i
i

K, <

. If n = 0 then go to step 12.
. Otherwise: Compute a norm of deviation, between two consecutive itera-

tions, of other phase calculated mole fractions:

Aed |yl —yel|
%

If A is smaller that a predefined small positive error § then go to step 14

(leave the inner cycle).
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12. Otherwise: Store the calculated mole fractions:
yei ' <=yl

13. Increment n:
n<n+1

and return to step 3 (inner cycle).

14. If 0 equals 1 up to a predefined small positive error £ then accept the
actual estimation of (p or T'): p* < p or T* < T, and stop.

15. Otherwise: Modify (p or T'), and return to step 1 (outer cycle).

2.8.5 Vapor-liquid distribution calculations

Composition of none of the phases is known, thus estimation of equilibrium ratios
is not enough to start the calculations. But if phase ratio is also known then the
phases can be calculated.

Let F', V, and L denote feed, vapor, and liquid amount (or flow rate), respec-
tively, and let A denote liquid ratio A = L/F; then the following material balances

Fz; =Vy;, + Lx; (i:1,2,...,c)

and
F=V+L

can be used to construct a material balance expressed with A:
Zi=1=Nyi+ Az (i=1,2,...,0)

that is
Zi = (1 —)\)szz—i—)\xl (Z = 1,2,...,0) (250)

Both phase mole fractions can be expressed from here, using estimated equilibrium
ratios Kj:

x:m (i=1,2,...,c) (2.51)
y—ﬁ (i=1,2,...,0) (2.52)
Mole fractions should sum up to 1:
2; m —1 (2.53)
2; ﬁ =1 (2.54)

If K; are given or estimated then a liquid ratio A satisfying one of the mole
fraction sum conditions can be numerically determined. One can find the root of
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Table 2.2: Interpretation of 1(\) defined in (2.55)

»(0) | (1) | fazisallapot i = (0)1(1)
<0 | <0 | liquid below boiling point >0
<0 | =0 | boiling point liquid =0
<0 | >0 | two phases <0
=0 | >0 | dew point vapor =0
>0 | >0 | superheated vapor >0

either (2.53) or (2.54), and this can be substituted back to (2.51) and (2.52) to get
the phase mole fractions. One of them (which was used to determine \) sums up to
1; the other one is to be normalized. Functions (2.53) or (2.54) are not monotonic
in 0 < A < 1; that may cause numerical difficulty. That is why both are used to

determine \: (K 1)
w<A>zZyi—in=Zﬁ=o (2.55)

None of the mole fractions obtained this way sum up to unity; both has to be
normalized; but function ¢()) defined in (2.55) is strictly monotonic in 0 < A <1
because 10 % )

i —1)%z
LG o S C S (2.56)

A D+ (- VE)

(2
always positive. This makes root finding much easier.

A formal condition for having two phases, i.e. root of (2.55) to fall between 0
and 1 is that function ¥(\) has negative value at A = 0 and positive value at A = 1,
because the function is monotonic increasing. The possible cases are collected in
Table 2.2.

One cannot know if the system in equilibrium has more than one phase; and
if not then if its state is liquid or vapor. In any case, only estimated equilibrium
ratios K; are known before convergence, and that might tell us a state different
from the real one.

Calculation of isothermal-isobaric flash

In this case the distribution is determined by temperature and gross composition
together; enthalpies can be calculated afterwards. (If heat state of the feed is
known than a necessary heating or cooling power needed to reach the specified
temperature and pressure can be calculated.)

Algorithm VL-TP: Isothermal-isobaric flash with ¢/ or /v
Given: T, p, and z

Looked for: A,  and/or y, and K in case of distribution

Guess: K
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[\

® N O ot

10.
11.
12.

13.
14.

15.

16.

. Compute composition independent data (interaction parameters if they

are temperature dependent, and vapor pressures).

. Compute 1(0) and (1), as well as 1) < 1(0)u(1).
. If 91y > 0 then there is only a single phase, stop.

Otherwise: There is a root of (2.55) in the needed domain (there may be
two phases).

. Save the earlier (last) estimation of K:

Ke, < K;

. Find the root X of (2.55) between 0 and 1.

. Compute mole ractions in both phases with (2.53) and (2.54).

. Normalize the mole fractions in both phases.

. Compute phase properties with the normalized mole fractions. (In case

of equation of state: mixed parameters, volume roots, root selection, and
finally partial fugacity coefficients. In case of excess model: activity coef-
ficients, and corrections if used.)

. From data obtained in step 8, and depending on whether ¢/ or ¢/~ is

applied, compute the difference:

ylol —yllol!
yl Tl

o <=

or

0 <~

Yy T poP

iTiPi P

—p+ E T
K]

(2
or a simplified epression.

If o is smaller than a predefined small error € then there are two phases
with computed data x, y, and A, stop.

Otherwise: From data obtained in step 8, and depending on whether ¢/
or ¢/~ is applied, re-compute equilibrium ratios Kj;.

Compute ¥ (0) and (1), as well as 1) < 1(0)y(1).

If 19 > 0 then there is only a single phase, stop.

Otherwise: There is a root of (2.55) in the needed domain (there may be
two phases). Compute the norm of difference between the new and the
earlier equilibrium ratio estimates:

A{ZZ|K61‘—K¢|
i

If A is smaller than a predefined small error § then there are two phases
with computed data x, y, and X although precision specified by ¢ is not
reached, stop.

Otherwise: Return to step 4.
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Calculation of isobaric-adiabatic flash

Inthis case the equilibrium state is determined by the enthalpy balance.
The simplest method is embedding the isothermal-isobaric flash calculation in
a cycle with unknown variable T':

Algorithm VL-PQ-embd: Isobaric-adiabatic flash with embedded cycle
Given: p, J, and z

Looked for: A\, T, « and/or y, and K in case of distribution

Guess: K ésT

1. Execute Algorithm VL-TP.
2. Compute H and/or h at the calculated compositions.
3. Compute the error of the enthalpy balance:

o= A+ (1= NH - J|

4. If error o is smaller than a predefined limit & then stop.
5. Otherwise: Modify T', and return to step 1.

Faster computation can be achieved with Newton-iteration in two simultaneous
variables: A and T'. The two equations are

W (\T) = Z % =0 (2.57a)
COT)=A+(1—-NH—-J=0 (2.57b)

The first equation is a variant of (2.55), the second one is a heat balance. Four
partial derivatives (entries of the Jacobian matrix) are needed for performing New-
ton-iteration. Partial derivative of (2.57a) by A is given by (2.56). Partial derivative
of (2.57b) by A can be approximated by neglecting A-dependence of H and h:

aNT)\
( oA >Twh_H

Partial derivative of (2.57b) by T' can be obtained from derivatives of the enthalpy

functions: CAT) oh -
AN = A— — (1 =N —
( oT ) A A ( A oT

Partial derivative of (2.57a) by T can either be neglected or obtained with numerical
differentiation.

Algorithm VL-PQ-Nwtn: Isobaric-adiabatic flash with Newton-iteration
Given: p, J, and z

Looked for: A\, T, « and/or y, and K in case of distribution

Guess: K, T, and A
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1.

S U W N

10.
11.
12.

13.

14.

Save the earlier (last) estimations:

Ke;, < K;
e <= A\

. Compute a ¥(A,T), ((A\,T), and their partial derivatives.

. Update A and T according to Newton’s iteration method.

. Compute both compositions with (2.53) and (2.54).

. Normalize the compositions.

. Compute phase properties with the normalized mole fractions. (In case

of equation of state: mixed parameters, volume roots, root selection, and
finally partial fugacity coefficients. In case of excess model: activity coef-
ficients, and corrections if used.)

. From data obtained in step 8, and depending on whether ¢/¢ or ¢/ is

applied, compute the difference:

ylol — yllpl!
yiol!

0 <~

or

o <=

'y'x‘gao’LpOP

iLiP; Dy

—p+y S
—~ i)

or a simplified epression.

. If o is smaller than a predefined small error € then there are two phases

with computed data «, y, and A, stop.

. Otherwise: From data obtained in step 6, and depending on whether ¢/

or /v is applied, re-compute equilibrium ratios K;.

Compute ¥(0) and (1), as well as 1) < (0)1(1).

If 49 > 0 then there is only a single phase, stop.

Otherwise: There is a root of (2.55) in the needed domain (there may be
two phases). Compute the norm of difference between the new and the
earlier equilibrium ratio estimates:

ACZ|K€Z‘—K1‘|

If A is smaller than a predefined small error § then there are two phases
with computed data x, y, and A although precision specified by € is not
reached, stop.

Otherwise: Return to step 1.

2.8.6 Liquid-liquid(-vapor) distribution calculations

101

Problems analogous to bubble point and dew point calculations do not typically
occur in liquid-liquid equilibria. The question is usually whether ther is distribution
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and if yes then how the liquid is distributed. Therefore the computations are similar
to the isothermal-isobaric flash calculations. Method v/~ can also be used, and this
is the typical case. The two liquid phases are denoted by superscripts 7 and 7 in

the following algorithm.

Algorithm LL: Isothermal-isobaric liquid distribution
Given: T, p, and z

Looked for: (phase! to total) ratio A,  and/or %, and liquid/liquid equilibrium

ratios K in case of distribution
Guess: K

1.

11.
12.
13.

14.

15.

A week point of this method is that is may end up with a result of a single phase
(no distribution) even if there is distribution according to the model. This is a good

Compute composition independent data (interaction parameters if they
are temperature dependent, and vapor pressures).

. Compute 1(0) and (1), as well as 1p < 1(0)1(1).
. If 91y > 0 then there is only a single phase, stop.

Otherwise: There is a root of (2.55) in the needed domain (there may be
two phases).

. Save the earlier (last) estimation of K:

Ke, < K;

. Find the root A of (2.55) between 0 and 1. (Apply x! instead of x.)
. Compute mole ractions in both phases with (2.53) and (2.54). (Apply x!

and zT! instead of  and y, respectively.)
Normalize the mole fractions in both phases.

. Compute phase properties with the normalized mole fractions. (In case

of equation of state: mixed parameters, volume roots, root selection, and
finally partial fugacity coefficients. In case of excess model: activity coef-
ficients; no corrections are needed.)

. From data obtained in step 8, and depending on whether ¢/p or /7 is

applied, re-compute equilibrium ratios K.

Compute (0) and (1) értékeket, as well as 1) < (0)(1).

If 1) > 0 then there is a single liquid phase, stop.

Otherwise: (2.55) has a root in the domain; there may be two phases.
Compute a norm of difference between the new and the last estimations:

A{ZZ|K61‘—K¢|
i

If A is smaller than a predefined error limit ¢ then there are two phases
with calculated data af, T and X althouh precision limit ¢ could not be
achieved, stop.

Otherwise: Return to step 4.
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solution, see Section 2.10. There are multiple solutions of the equation system we
solve here, and the one phase is the so-called ’trivial solution’. This is the right
solution if really there is no phase distribution. If there is phase distribution then
trivial solution can be avoided with a good chance by overestimating the equilibrium
ratios K: If K; > 1 is expected then let it be very high, e.g. 10%; if K; < 1 is
expected then let it be very low, e.g. 1074,

A frequent vapor-liquid-liquid distribution problem is finding bubble point
of some liquid mixture at constant pressure in the case when the components only
partially solvable in each other in liquid phase. If really there is liquid phase
distribution then the vapor is not in equilibrium with the liquid phase in gross liquid
composition but with each separate liquid phases in its particular composition.
Therefore, liquid-liquid distribution should be taken into account at bubble point
calculations.

Consequences of neglecting this note is demonstrated on the example of atmo-
spheric isobutanol - water system modelled with modified Raoult-Dalton equation,
UNIQUAC model with inetractio parameters 493.100 and 87.888 cal/(mol K).

If only gross liquid composition is considered then the results are shown in
Fig. 2.13. There is some overlap of the phase curves in a short interval, and
there is a nonsense equilibrium slope in a long interval. If, on the other hand,
liquid distribution is taken into account then the results are shown in Fig. 2.14,
revealing the real structure of the equilibrium system: heterogeneous azeotrope.

Since there are three mutual equilibria here, checking equilibria of vapor with
only one of the liquid phases is enough. A possible algorithm is what follows:

Algorithm VLL: Bubble point temperature with possible liquid distri-
bution

Given: pressure p and gross liquid composition z

Looked for: bubble point temperature T, equilibrium liquid phase compositions
2T and 27 in case of liquid distribution, and equilibrium vapor composition
Guess: Ty is estimated with an appropriate T; liquid-liquid equilibrium ratios are
estimated with some appropriate K values.

1. Compute temperature dependent data at T'.

2. Execute Algorithm LL.

3. Initialize counter n to 0.

4. Compute equilibrium ratios K™* between one of the liquid phases and the
vapor phase.

5. Compute vapor phase mole fractions:

6. If n =0, then go to step 10. Otherwise:
7. Sum up vapor mole fraction:
o <= Z Yi
i
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Figure 2.13: Isobutanol - water, 1 bar, with gross liquid composition



2.8. Phase equilibrium calculations 105

105

100

"W\

85

\\k

0 20 40 60 80 100 z,y, %

80 /
60
olf

0 20 40 60 80 100 x (%)

Figure 2.14: Isobutanol - water, 1 bar, with liquid distribution
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8. Count norm of differences between consecutive vapor phase estimations:
A=Y [y — el
i

9. If A is small enough then go to step 15. Otherwise:
10. Store the calculated (not yet normalized) vapor mole fractions:

yei < Yi
11. Normalize vapor mole fractions:
Yi <= Yi
ag
12. Increment counter:
n<n-+1

13. Re-compute composition dependent vapor phase properties if there are
such variables in the model.

14. Return to step 4. (Inner cycle)

15. If 0 ~ 1 then accept T a bubble point temperature: Tp <= T, and go to
step 17.

16. Otherwise: Modify T, and return to step 1. (Outer cycle)

17. Normalize vapor mole fractions:

yi¢&
o

and stop.

2.8.7 Thermodynamic consistency of measured data

Before fitting parameters to data, it is highly suggested to check thermodynamic
consistency of the data. That is, check if the data system satifies general thermo-
dynamic relations independent of the applied particular model. Such relations are,
for example:

AE
RTIn~y; = <M> (2.58)
ani T7pa ,ﬁ'l
AEV AFH
zi:xidln'yi =7 dp — T dT (2.59)

Of course, these relations never fit perfectly but only up to uncertainty in mea-
surement, data. Consistency check methods mainly look for systematic errors, but
are sometimes able to point out large random errors as well.

Consistency check of only binary vapor-liquid equilibria are treated in this text.

The most applied methods are the following two.
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Area integral consistency check

Relations o0 = 1 — 1 = 1 — x are valid in binary mixtures. Applying (2.59), one
can write s s
dln— = dp — dT 2.60
N T RT PRI (2.60)
Mixing volume effect are usually small in common liquids and can be neglected.
Isothermal case (Hdla et al, 1967). In this case the second member of (2.60)
is zero; the first member is rather small; therefore integration according to mole

fraction should give approximately zero:

1 p(z=1) E
/mﬁm:/ AV i ~0
0 V2 p(z=0) RT

Activity coefficients can be well approximated with ideal gas at low pressure:
Yip
Tip;

Yi =

After plotting logarithm of ratio of activity coefficients against x, numerical or
graphical integration can be performed. Normally, the plot is positive at one section
inside interval [0,1], and negative in the complementary section. The integral is zero
if the areas under the plot of the two sections are equal. That is why this method is
called area integral. King (1969) analyzed two measurement data sets of system
benzene - n-heptane with this method, and obtained results shown in Fig. 2.15.
The data shown with empty circles are wrong; the other one is acceptable.

Izobaric case (Herington, 1951). In this case mixing heat is also to be taken
into account but usually no measured excess heat data are available. However,
molar mixing heat data of organic materials are rather similar; as well as water -
organic data, and rough estimation of the expected range of the integral value can
be given.

Residues consistency check

Applying a general thermodynamic relation, one of the interdependent variables
can be expressed, and compared to its measured value. The deviation is called
residue. These resudues ought to be zero; their distribution can be analyzed. An
example is shown below.

Activity coefficients of binary mixture can be expressed in isothermal case as

AEG
AEG d RT
Invy, = AT +(1- x)T (2.61a)
AEG
AEG d RT
Iy = —nr — g —-" L (2.61b)

RT dx
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Figure 2.15: benzene — n-heptane, area integral data consistency check, King, 1969

Then total pressure can be calculated with modified Raoult-Dalton equation:

APG APG
(@) = ot AG+(1_) BT )| 4 (1 aps AP\ RT
PR = 3PP\ T R P2 X TR dz
(2.62)

Members in square bracket are for activity coeflicients according to (2.61a) and
(2.61b). Equation (2.62) is an ordinary differential equation whose solution is the
function % = G(z). Total pressure in function of z, p(x), is measured; at the end-
points of the interval it gquals pure component’s vapor pressure; vapor pressures are

APG _

known; but function S = G(x) is unknown. This unknown function is obtained

by some numerical solution of the differential equation.
Once AR—ETG = G(x) is obtained, activity coefficients 7 and 2 can be computed

with (2.61a) and (2.61b), then the vapor mole fractions can also be computed:
* _ ViTip;
' p
These y; vapor mole fractions are computed merely from the measured z, p,

and T data. (7T is used in calculating vapor tensions.) In principle, these y; data
ought to equal the measured y; data:

Ay=yl —y;~0
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After plotting residues Ay; against x, its distribution can be analyzed and
evaluated. Uniform distribution refers to random errors; any shift in expectation
along z refers to systematic errors.

2.9 Parameter fitting and extrapolation

Only fitting of binary intaraction parameters are discussed in this text.
Before fitting, thermodynamic consistency should be checked, see section 2.8.7.
The form of the model expressed to zero is usually something like this:

f(T,p,z,y; a,b,...) =0

Here a, b, etc. are the parameters to be fitted to data. Fitting is done numeri-
cally; this is a special kind of optimization problem. Once the optimal parameters
are found, their variances around expectations are worth to analyze.

Binary interaction parameters are strongly correlated; the pair of data (e.g. A; ;
and A;;) can be shifted along the longer axis of an elongated ellipse (of the level
lines of error function to be minimized at fitting). Apparently essentially different
parameter pairs can be obtained with different fitting methods, and they may work
similarly well or badly when substituted into the thermodynamic model.

Fitted parameters of the thermodynamic models usually valid only in some
range of temperature and pressure; they are sensitive for temperature, first of all,
particularly those applied to liquid-liquid equilibria.

Parameters fitted to binary systems can be extrapolated for calculating
equilibria of multicomponent mixtures according to experience, probably because
effects of ternary and higher order interactions on the equilibria are smaller by
decades than those of binary effects. The other way, i.e. applying parameters
fitted to ternary systems to calculating equilibria of binary systems, do not work
well because measured data inside the composition triangle does not account for
behavior of binary systems. For example, for fitting a binary system, the phase
curves should precisely reach the pure component’s vapor pressure and/or boiling
temperature.

Ternary liquid-liquid equilibria cannot always be calculated based on para-
maters fitted to binary systems because usually not all the three component pairs
are partially mixing; those calculations must be based on parameters fitted to
ternary measurements, but those parameters can be used for calculating mixtures
of more components.

Parameters fitted to vapor-liquid equilibria usually cannot be used for cal-
culating liquid-liquid equilibria, and vice versa. The empirical models discussed
in this texts are not based on such firm theoretical background; thus separate pa-
rameter sets are needed for calculating both kinds. It is usually so even in case of
modelling vapor-liquid-liquid equilibria.
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2.10 Phase stability

Checking stability of calculated phases against composition and density fluctua-
tions may be important in simple liquid-liquid equilibria and high pressure phase
equilibria. (The usual calculation methods work well for ordinary vapor-liquid
equilibria.)

The problem forming at liquid-liquid equilibria can be well visualized on binary
cases although the real problem occurs mainly in multicomponent cases. The equi-
libria are studied at given temperature and pressure; thus mole fraction = of one of
the two components is the only independent variable against which the calculated
excess Gibb energy AFG is plotted (Fig. 2.16). The tangent line drawn to a
point of this function intersects vertical axes (at z = 0 and x = 1) the respective
chemical potentials.

AEG
0( vlw g z Y2 11 2
wz)
— |
ra— /

-0.12

Figure 2.16: A®G function of methanol — cyclohexane system at 20 C

Function APG(x) shows excess Gibbs energy of a (hypothetical) homogeneous
mixture with composition z. According to the minimum condition of equilibrium,
the phase with composition z is stable if it cannot separate to two phases with
compositions 27 and z!! being in mutual equilibria in such a way that

MEG!) + (1 = NAPGET) < APG(2) (2.63)
where z = Azl + (1 = A\)z!l and 0 < X < 1.
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If inequality (2.63) holds then the homogeneous phase with composition z is
unstable. z, 27, and 2!/, together with material balance determine the phase ratio.
Homogeneous phase with composition z is stable only if inequality (2.63) canot
occur with any feasible combination of ! and z!.

Instability of some compositions is easy to show. Homogeneous phase with
composition z is evidently unstable if function AFG(z) is concave there, i.e. if

(£5), o

This does not work inversely. Point z in Fig. 2.16 is unstable because condition
(2.64) is staisfied there, but although this condition is not satisfied at composition
w, this composition is also unstable because the common tangent line drawn to the
function in points !, and z!! runs below APG(w), i.e. the Gibb energy is smaller
as a combination of the two separate phases than that of the homogeneous phase.

Denote with y; and y, those compositions at which the sign of the second
derivative changes:

=0

d2AEG(x)
dx?

)x_ylay2

Condition (2.64) is satisfied in all points between y; and ys; we say that the ho-
mogeneous mixture is locally unstable in this domain. Between 2! and y;, and
between z!! and s, the system is locally stable but globally unstable; the
points out of these ranges, near the pure components, are locally stable. Locally
stable but globally unstable compositions are called metastable.

If the homogeneous phases 2! and 2!/ are stable in themselves and are in mutual
equilibrium then their chamical potentials are equal component by component; this
is what the common tangent line points out by intersecting the two vertical axes.
This is why the two tangent lines coincide. Equality of the chemical potentials,
i.e. the common tangent line, is a necessary but not always sufficient
condition of phase equilibrium. If, for example, function A”G(x) has more
than three local extrema (more than one maximum and two minima, as in Fig.
2.16), then there are more common tangent lines (suboptimal solutions) whose
value in point z is higher than the minimum.

Equality of the chemical potentials is also satisfied by a ’common’ tangent line
drawn to ! = z and ! = z; this is the trivial solution. Any suboptimal
solution is optimal in its small neighborhood. Sure solution of the stability problem
is a global optimum only.

2.11 Questions

1. What is fugacity?

2. List some well known equations of states! How can they be classified?
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. For chacking phase equilibrium of pure material at given temperature and

pressure, how can we calculate fugacity coefficients? Which state variables
are their arguments?

. How can partial fugacity be expressed using equation of states, and how with

an excess function model?

. What is Poynting correction for? When may it be neglected?
. What are mixing rules?

. What is a lattice model and what is a cell modell?

. List some frequently applied activity coefficient models!

. What is modified Raoult—Dalton equation?

Describe a simple algorithm for calculating bubble point at give pressure and
liquid composition with modified Raoult—Dalton equation!

How does isothermal-isobaric flash calculation work? How is isothermal
liquid-liquid distribution calculated? How is it for three phase bubble point?

What is area integral check?

How can fitted interaction parameters be used for more general equilibria?
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Chapter 3

Numerical methods

3.1 Equation solving

3.1.1 Zeroes

The task is finding values of variables in equations that satisfy the equations. For
example, a 2-variable system is:

sin(x + 2y) /2% = —28.3
2% + cos(y) = 3.5xy

We say that = and y together constitute a solution of the system if both equations
are satisfied with them. Introduce two new variables, f and g, functions of x and

y:

f(z,y) = sin(z + 2y)/2* +28.3
g(z,y) = 2* — 3.5zy + cos(y)

Values of functions f(z,y) and g(x,y) are generally not zero. =* and y* together
are called solution of the equation system if

are satisfied. In that case, array [z*, y*] is also called zero of the (system of)
equations. Not all equations have zero, and an equation may have several zeroes.
Given z and y, the values f(z,y) and g(x,y) are called residues of these functions.
x* and y* together constitute a solution of the equation (system) if the residues
f(z,y) are g(z,y) are zeroes. Thus, zeroes of the equation are also called zeroes of

the function (pair) {f(z,y),9(z,y)}.

114
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General form of an equation (system) is:

fl(xl,xg,...xn) =

fg(l‘l,xg,...xn) =0

fm(x1,22, ... 2n) =0

Here each variable f1, fo,... fm (altogether m dependent variables) may, in princi-

ple, depend on all variables x1,xo, ...z, (altogether n independent variables).
Sometimes a dense notation is applied, using arrays (vectors) of z and f:
flx)=0

Zeroes of an equation are always looked for inside a given domain, e.g. in an inter-
val, in case of a single variable. Generally any domain is enabled, even the whole
space. If otherwise not said, however, we always assume continuous independent
variables, and their contiguous domain.
The equation may have a solution if m < n, m =n, or m > n.
Example 1. n =1, m = 2:
fa,y) = Ba(y - 4)

At values [z, y] = [0, 4]: f = 0, hence the pair [0, 4] is a zero of equation f(x,y) = 0.
Example 2. n =2, m =1:
f(@) =3z +2)

glx)=1+x/2

Both f(r) =0 and g(z) =0 at x = —2, thus —2 is a zero of the system {f(z) =0,
g(x) = 0}.

Case m = n is the most important in engineering practice. A point in the
n-dimension space of the independent variables can be assigned by n independent
equations. For example, a smooth curve in the (z, y) plain (n = 2) is described
by a two-variate f(z,y) = 0 equation (that might be transformed to the form of
y = f*(x)). Another curve can be described by equation g(z,y) = 0. If the two
curves intersect then the intersection point is a zero of the system {f(x,y) = 0,
g(z,y) =0 }.

One of the equation removed (e.g. remove g, and let remain f(z,y) = 0 only),
the system has intinite many solutions (all the points of the curve).

If, on the othar hand, the system is supplemented with a randomly chosen third
equation, say h(x,y) = 0, so that m > n, then the system of three equations having
a zero is not excluded but its chance is very low. Why would curve h(z,y) = 0
go through the zero of {f(z,y) = 0, g(z,y) = 0}? It is possible to find such a
curve, but it would be redundant beside f(z,y) = 0 and g(z,y) = 0. Even if all
three equations apply to the same real engeneering or scientific problem, and well
written, any small measurement error or numerical error due to inevitable rounding
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Figure 3.1: Bisection

at multiplication or division can cause them loosing a common zero, even if any
two of them would serve us with a good approximation of the proper solution.

Here we discuss numerical solution of non-linear equations and equation systems
in case m = n. We assume you are familiar with the methods of solving linear
equations.

3.1.2 Bisection

This is a method applicable to univariate and monotonic functions only.

For example, f(x) = 1/(3—x)—0.5is a strictly monotonian increasing function.
We a looking for its zero in the closed interval [0.2,2.2] (Fig. 3.1). Exact value of
the zero is 1.0. The function value at the left hand side end-point of the interval is
negative (approximately -0.142857143), and is positive (exactly 0.75) at the right
hand side end-point of the interval. We compute the middle point: = = (0.2 +
2.2)/2 = 1.2, and evaluate the function here as well. The computed value is
0.05555555. . ., positive. Since the function is strictly increasing, it is clear that the
zero cannot be found to the right of the middle point, therefore the right hand side
end-point of the interval can be shifted left to the present midpoint. From now the
zero is looked for in the closed interval [0.2, 1.2]. Its midpoint is (0.241.2)/2 = 0.7;
here the function value is negative, hence the midpoint becomes a left hand side
end-point, and so on.

In general, first we need somehow bracketing the solution. Once it is done, we
compare the signs of the function values calculated in the two end-points and in the
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midpoint. The midpoint becomes that endpoint with which their signs equal. This
works because the function is monotonic increasing or decreasing in the interval. If
two end-points of an interval are of the same sign then that interval can be omitted
from the search.

This is one simple member of the more general family of domain excluding
methods, the only member of them that is easy to organize and perform. All the
others are much more demanding.

This simple method works for single variables only, and it divides the length
of the interval by 2 in each step; thus the search domain shrinks to 27" times its
original in n steps.

3.1.3 Successive approximation methods

These methods try to approximate the solution «* by successively approximating it
with generating a point series (9, (M) x*=1 g®) 2E+D) " Point 20 is the
initial estimate of the solution and, generally, each =*) point is its k-th estimate.
Methods of successive approximations provide some procedure for generating new
approximations from earlier ones. The simples methods utilize just the actual
k — 1-th approximation for generating the k-th one:

2® — g(2(-=1) (3.1)
Other methods may utilize several earlier approximations:
2 = g(x*—D k=2 k=3 " (3.2)

The methods differ in these procedures (3.1) and (3.2) only.

Any equation f(x) = 0 can be transformed to the form x = g(x). If no other
idea crosser your mind, you can apply transformation g(x) = f(x) + x, but there
are a lot of possibilities. After such a transformation, form (3.1) can be applied.

Any procedure can be used to generate a new approximation. The ususal way is
approximating the function with a simpler one with can be solved analytically. Such
a function is, e.g. a second order polinomial. The parameters of the approximating
functions are fitted to the known points and their function values, and then the
zero is calculated; This zero is taken as the new approximation.

In this section only linear approximatios are discussed, i.e. all the methods
discussed here are so-called successive linearization methods.

Convergence and damping

Successive approximation is successful if the generated series (¥, &) z(*=1),
x®) =+ converges to a zero *. It is successful in practice if, started from
an initial estimate z(°), converges to the demanded zero and fast enough.
Convergence problems are best visualized in univariate case, applying form
(3.1). Let y = g(x), and plot y = g(x) in a right angle y — = system. At x-es where
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Figure 3.2: g(z) = x + sin(mx)/4
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f(z) =0, x = g(x) is also satisfied, and the curve y = g(z) crosses the straight line
Y=z

Search, for example, zeroes of sin(mz) = 0 in the interval x € [-0.5,2.5]. (The
zeroes are © = 0, x = 1, and = = 2.) In this case f(z) = sin(wx), and let us choose,
for example, g(x) = x + sin(wx)/4. Function g(z), the straight line y = z, and
successive estimations with two different initial estimates, namely zy = 0.25 and
xg = 1.72, are shown in Fig. 3.2. Both series converges to zero x = 1. Zeroes
x = 0 and x = 2 cannot be approached, the series according to (3.1) are a going
away from their neighborhoods. Zero x = 1 is called a stable zero, whereas zeroes
x =0 and x = 2 are unstable with (3.1). Stability depends on the slope of g(z) in
the neighborhood of the zero.

g
2.2
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1.4

1.2 /
17
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0.4 /
o/ \

0

0 02 04 06 08 10 12 14 16 1.8 20 22 =z

Figure 3.3: g(z) = 3.5z — 1.522

A more complex situation is shown in (Fig. 3.3) with g(x) = 3.52—1.522. Start
the search anywhere, you cannot reach near the zero * = 1.6666... unless start
exactly there. There is a couple of oscillating points = 1 and x = 2: g(1) = 2 and
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g(2) = 1. Start the calculation from a = 0.8, then the series series ’convereges’ to-
ward and oscillating system of four points: [1.168729824, 2.041660282, 0.893245927,
1.929528315]. One can construct g(x) functions producing oscillating series with
two, three, four, five, etc. points, up to apparently acyclic but disordered series.

These considerations are valid to any successive approximation method even
if it is not transparent at once. Even if none one of the forms (3.2) is directly
applied but residues of f(z) taken at earlier approximations zF=D | 2(k=2) ete,
take place in the form of calculating a new approximation z(*), the right hand side
of z(¥) = ... is the actual function g(z*=1, z(*=2) ).

In case of multivariate functions (i.e. multivariate equation systems), any com-
ponent’s behaviour can be considered as a single variable above. Depending on the
actual form of function ) = g(x*~1) or ) = g(ax=1) k=2 gk=3)
and of the initial estimate, the generated series can be convergent or not, and
if convergent then either to the demanded solution or not. No general well
behaving, good-for-all, successive approximating method exists. An ap-
propriate search method together with an initial estimator has to be
found to each problem experimentally.

If the selected method does not converge, or is too slow, or oscillates, then
damping is a cheap way to try mending it with modifying the actual form of
) = g(x*=1) or £*) = g(x*=1) 2*=2) k=3 ) Let

z®) = a4+ (1 - a)g(x*—D gt k=3 (3.3)

Here « is a so-called damping factor. If a = 0 then the original method is selected
without damping; if « = 1 then the last approximation is repeated, the damping
is of 100%. If 0 < a < 1 then the new approximation is somewhere in the straight
line section between the last (*~1) and that suggested by g(...).

Secant method

This is again a method for a single variable only, and a kind of successive lineariza-
tion. The actual function f(z) is approximated, in each iteration step, by a linear
one, h(z) = ax + b, fitted to two points. Then the solution of h(z) = 0 is the new
approximation.

Consider two earlier approximations z(*~1) and z(*=2)| together with their re-
spective function values (residues) f*~1 = f(z*=Y) and =2 = f(ak-2) ;
these data assign two points in the f—z plain: (z(*=D, f(#=D) and (z(*=2), f(:=2)),
Fit a straight line h(x) = ax + b to these two points:

FOD g1 4 g
f(k—Q) _ Cll‘(k_Q) +b
Subtract the equations: f*=1 — f(=2) — g (k=1 _ 2(k=2)) hence

f(k—l) _ f(k—2)

= 1) _ (h—2)
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Table 3.1: Secant methord, first example

121

k () f(k)

0 0.2 -0.142857143
1 2.2 0.75

2 0.52 -0.096774194
3 0.712 -0.062937063
4 1.06912 0.017898575
5 | 0.99004672 | -0.002475998
6 | 0.999656015 | —8.6%107°
7 | 1.000001712 | 4.3%10~7
8 1 —74x10" 11

b= f-1) _ ggk-1)
Zero of h(z) =ar+b=01is x = —b/a, thus:

1
f(kfl) _ f(kf2)
2 (k=1) _ 4 (k—2)

L0 — g (k=1) FD)

This form expresses the ideas incorporated in the method but usually a less
informative but simpler form (obtaind by a little algebra) is used:

FU=1) g (k=2) _ p(h=2) 5 (k=1)

(k) _
= FO—1) _ fh-2)

It is transparent that two initial estimates are needed to start the iteration.

Consider, for example, function f(z) =1/(3 —z) — 0.5.

Let the two initial estimates first be (90 = 0.2 and z(!) = 2.2. The respetive
residues are f(0) = —0.142857143 and f(!) = 0.75. The straight line fittes to these
points intersect the 2 2(2) = 0.52, this is the new approximation (Fig. 3.4). The
series of approximation obtained this way is shown in Table 3.1. Let now the two
initial estimates be z(9) = 2.2 and () = 1.6 . Then the series of approximations
is shown in Table 3.2, illustrated in Fig. 3.5.

A version of secant method is regula falsi or (double) false position method. This
does not apply always the last two approximations but maintain the approximations
so that they bracket the solution, just like in the bisection method.

Multivariate secant method

For N equations and variables, residues of N + 1 different points can be calculated.
Here we would like to use points (@, ™), ..., &™) and residues f(o), f(l), ceey
f(N ) to generate a new approximation (V1. We suppose that approximations
2@ 2™ 2(N) span the N-dimension linear space (they give rise to a simplex),
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Figure 3.5: Secant methord, second example
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Table 3.2: Secant methord, second example

k 2(F) f(k)

0 2.2 0.75

1 1.6 0.214285714
2 1.36 0.109756098
3 1.108 0.028541226
4 1.01944 0.004907703
5 | 1.00104976 | 0.000262578
6 | 1.000010204 | 2.551 %106
7 | 1.000000005 | 1.34 %1079

so that an N-dimension hyperplain can be fitted to the N + 1 points (:B(O),f(o)),
(@ D) (@™ ™)) in the form of h(z) = Az + b:

N
ho(xg,x1,...2N) = E a0,:T; + bo
=0

N
hi(xg,x1,...2N) = E a1,:%; + by
=0

N

ZN) =Y an i +by
=0

hn(zg, 21, . ..

The hyperplain should intersect all N + 1 points, therefore

FO =Az® +p
f(l) — Aw(l) + b

FV = Az 4+ p

(Superscripts denote approximations, indexes denotes space components.)

Subtract each neighboring equations to obtain N vetorial equations where b is
already cancelled. Denote differences f(k) — f(k_l) by Af(k), and ) — (k=1 by
Az®) | to obtain:

Af(l) — AAzMD
Af® = AAz®?

AfN) = AAz™)
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Combine column vectors Af*) (k=1,2,...N) to obtain an N * N matrix F,
and combine respectively column vetors Az(*) to obtain matrix X. In this way
equation system (3.4) can be considered as matrix equation

F=AX

From this matrix equation, A can formally be expressed as A = F~!X, and
from equation £V = Az®™) + b, formally b = £ — Az(™ . By substituting
these into h(a:(N“)) = Axz(N+D 4 b = 0, a new approximation can be expressed:

gD = (V) _ A1 pN) = £ (N) _ xF—1 (V)

However, computing the inverse F~! is not needed. Instead, let

2NFD — (V) L A

where AW is obtained by solving the linear equation system

FAW) — _Xf(N)

Wegstein method

To start multivariate secant iteration, N + 1 initial estimates are needed, and a
linear equation system is to be solved in each step. Wegstein suggested, instead,
to apply single variate secant formulas for multivariate case, too:

k—1) (k—2 k—2) (k—1
f'i( )x§ ) _ f'i( )x§ )

o —

, (Z = 1,2,...N)
i .
fz( 1) fi( 2)

This means coupling variables with equations, and neglecting effects of other vari-
ables when updating them.
Newton method

If the function is differentiable then linearization can be based on a single point
instead of two, or N + 1. In the approximation z(*~1), let the residue and the

. A @\ _ :
derivative be, respectvely, f*~1) and T = f =1 then the updating
x
formula is (1)
L) _ -1y _ S

- fr (k=1

Solution of the problem presented at secant method, with initial estimate z¢ =
2.2, is shown in Fig. 3.6 and Table 3.3.

Newton method is a limit of secant method. It can be obtaine by approaching
the two initial estimates to each other. If the function cannot be analytically
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Table 3.3: Newton method
k 2k )
0 2.2 0.75
1 1.72 0.28125
2 1.2592 0.074448529
3 | 1.03359232 | 0.008541545
4 | 1.000564222 | 0.000141095
f
1.0
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Figure 3.6: Newton method
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differentiated, for example not given in explitice form, or if its computation is
difficult, then the derivative can be approximated numerically:

df _ flz+0z) — f(z)
dz ox

In this case the Newton method coincides with secant method with the substitution
of x(k=2) = z(k=1) 4 5,

Inverse of the matrix Jacoban, containing partial derivatives, takes place in the
formula in the multivariate case:

af1 of1
J = R
ofn Ofn

g+ = g(N) _ g=1¢(N)
No need, again, for computing inverse of J~! but simply apply

2(NFD — (V) | A

where A ig solution of the linear equation system
JAWN) — _ f(N )

When applying numerical differentiation, multivariate Newton method coincides
with multivariate secant method.

Basic features of linearizing methods of successive approximation

The series of approximations generated by Newton method coverges to the zero if
function f(z) or f(x) and its derivatives are monotonian near the zero, and the
initial estimate is near the zero. This is well illustrated in Fig. 3.6 and Table
3.3. tablazat.

If, however, the function is not monotonic or the initial estimate is pure then
the series of approximations may diverge away from the zero. Such a case is shown
in Fig. 3.7, where the zerois z* = 0.1. If z*~1 < 0.4 then Newton method works
well. If z(*=1 > 0.6 then the updated approximation is farther from the zero. The
figure shows z(*~1 = 1 with 2 ~ 1.346 . If z(*~1) ~ 0.55 then 2(®) cannot be
computed because f’ ~ 0. In multivariate case a similar situation is signalled by a
(near) singular Jacobian.
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Figure 3.7: Failures with Newton method

3.1.4 Transformation to minimization problem

Any zero finding problem f;(z1,22,...2x) =0 (i =1,2,...N) can be transformed
to minimization problem:

N

min Z fA(x1, 29, ... 2N) (3.5)

{z1,z2...xn} =

In this case the objective is never negative, an since the objective’s value is 0 ate
the zero of the equation, the zero is the minimal point.

In practice, however, functions are several local minima, and the function value
of most of them is not 0. As an example, a univariate function and its square are
plotted in in Fig. 3.8. Function f(z) has a zero at  ~ 0.08; function f?(x) has
local minima at z =~ 0.08 and x ~ 1.21, and the latter is not a zero of f(x). Many
local minima can occur in multivariate functions.

Applying the usual methods of minimum search, only one of the local minima,
belonging to the actual initial estimate, is found. That is why this method is not
suggested. Just the contrary: search for local minima are formulated as search for
zeroes. For example, multivariate Newton method was originally suggested as a
part of minimizing multivariate non-linear functions: Equations are obtained be
equaling partial derivatives with 0, and any solution of such equation is a local
minimizer of the original function. This is the Newton-Raphson method for finding
local minima.
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Figure 3.8: Zeroes and minima

3.2 Parameter fitting

The problem is, in mathematical sense, fitting a continuous manifold to some (at
least two, but can be many) points of an N-dimension space.

Simplest formulation is the following. Consider an N — 1 dimension real Eu-
clidean space whose components describe some properties of a physical object. Such
properties can be, for example, length, width, temperature, pressure, etc., together
forming a property array . We are given a series of such property arrays, xj,
g, ...&,, altogether n points in the N — 1 dimension space. To each of these
points an other, originally unknown, property y is determined by measurement:
Y1, Y2, -.-Yn. For example, we measure intensity of heat radiation. This is an
N-th property. Such an N — l-variate real function f(x) is looked for that fits
to this set of n points. We already know the form of f, and it contains some
unknown parameters pi, po, ...pPm; thus the task is to find those parameters that
make f(x;p1,p2,...pm) best fitting to the points.

For example, a straight line should be fitted to a set of points in the y — x plain;
its slope and itercept are to be determined.

Two main classes of fitting problems are distuingushed.

If exact fitting is needed then the problem is called collocation. n equations
are obtained for n points if these points are substituted into the function; thus
n parameters can be determined by solving an equation system. For example, a
straight line can be fitted to two points, a circle to three points in a plain, or a plain
to three points in higher space, etc. We do such a thing in case of interpolation,
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for example.

If the measurement errors are involved, and exact fitting is impossible, then the
task is to find a fitting best in some sense. In that case the task is called regression.
Ususally the number of parameters is less than the number of points. For example,
a straight line is fitted to 25 measured points.

In this section regression is discussed only. Here the parameter values are se-
lected so that the function obtained this way be as near the ’genuine’ function,
that would be obtained if no error were present, as possible. However, this genuine
function is not known (if it were then no need for regression would occur), and
what ’error’ is is also a question.

3.2.1 Simple regression

In this case we assume that exact values of the independent variables x are known,
i.e. they are not distorted with error. For example, temperature is measured in
exactly known time moments, and only temperature is prone to error.

To find optimal fitting, shape of probality distribution of measurable values
belonging to each point ought to be known. If this were the case then one could
estimate distribution parameters, e.g. expectation and variance, and then find the
most probable parameter values. This is called maximum likelihood method.

Normal distribution, with expectation ¢ and variance o, may frequently be
assumed because measurement errors are caused by many, small, independent ef-
fects. The task is to determine parameter values so that function values fi, fo,
... fn calculated in points @1, @2, . ..z, best approach expectations 1, @s, ... ©x-

Least squares

Suppose, as a first case, that variance o is independent on the place of measurement,
i.e. the same variance ¢ is valid in all the x; points. Then the probability density
function of f; measurable at points x; is

fi = i)
#i(fi) = exp (—%
Since the measured values, and their errors, are independent, the combined density
function of all the measurements is their product:

oF) = ﬁexp (-

202

Optimal regression is obtained at maximum of this probability density. It is easier,
however, to minimize the negative logarithm of this product:
n
(fi - @(wi7aab7 Cyonn ))
2

202

2
min
{a,b,c,...

i=1
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where parameters a,b,c,... of function ¢(a,b,c,...) are fitted, and we assume
that respective values of function ¢(x;,a,b,c,...) would have been obtained by
'precise’ measurement. (IL.e., the unknown expectations are determined by fitting
parameters a, b, ¢, ....)

Factor o2 is constant, it can be lifted up from the braces. Its value does not
influence the minimizer point, i.e. the point a,b,c,... at which the minimum is
located, thus the following minimization promlem is equivalent to the original one:

n

min z:(fz — p(xi,a,b,c,.. ))?

b,c,...
{aben}

This is method of least squares. If the minimum is searched for in an infinite
space of parameters a,b,c,..., or if we can be sure that the minimum is inside
the search domain, then searching for local minima is enough. These minima are
amongst the zeroes (solutions) of the following equation system:

22 <(fi_80(wi,a,b,c,,,,)) 850(3%‘76;,5,6,...)) 0
i=1

22 <(fi—sa(wi,a,b,c%.)) 380(:131',6;:,0,...)) o
i=1

(3.6)

In case of linear function ¢(a,b,c,...), e.g. fitting straight line or plain, the
objective is a sum of terms quadratic in parameters a, b, ¢, .... As a result, the first
member in system (3.6) is a linear function of the parameters, and the derivatives
do not contain the unknown parameters, thus a linear equation system in the
parameters is obtained. For fitting a plain, for example, the equation system is

I

(fi —(a+bx; +cy)) =0

=1

NE

(fi — (a4 bx; +cyi))z; =0
1

-
Il

(fi—(a+bx;i+cy))yi =0

I

i=1

Here values f;, x;, y; (i = 1,2,...,n) are known and values of parameters a, b, and
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ma (Se)or (Sn)e= (54)
(% a:i> a+ <% :cf) b+ (lzn;n:czyz> c (% fia:i)
(S e (S o (St) e = (0]

The bracketed sums are known, these are the coefficients and the right hand side
of the equations.

c are looked for, i.e. the equation can be writtes as

Generalized linear regression. Fit, to a set of points, a function p(x) =
>, akgr(x) where functions gi () are known, given, do not contain unknown pa-
rameters. (Usually members of a so-called othogonal series. For example: gi(x) =
xF=1) Then o(x) depends linearly on parameters ay, and the method of least
squares can be used.

Weighted least squares

Generally, variances o1, 09, . ..oy, at the different measurement points are different,
and the problem to be solved is

min  (fi — p(mi,a,b,c,...))>
{a,b,c,... } = 01‘2

i.e.

=0

i<fi—<p(:1:i,a,b,c,...) 830(a:i,a,b,c,...)>

o? Oa

o2 0b

(2

Z<fi_90(wivaabvcw“) a@(wiaavbacv"')> -0

If a linear function is fitted then linear equation system is obtained in this case,
too.

In this way the values with smaller variance are taken into account with larger
weights, the more uncertain ones with smaller weights.

Absolute values of the variances are need not be known, their ratio is enough.
If we know how all the variances o; are related to variance ¢* in an arbitrarily
selected point x*, and write o] ¢c* instead of o;. Factor ¢* can be lifted up from
the brackets, and omitted.
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Non-normal distribution of erros

If error distribution is not normal then method of least squares is not the optimal
regression. A formula may be derived if the shape of the distribution is known,
otherwise approximating methods must be applied.

If the distribution is not known but the measurements fit to some function
according to visual observation then method of least squares may be approximately
optimal. Otherwise, e.g. if there are many errors due to mistype or unusual reasons
with distribution far from normal then minimizing sum of absolute errors or some
even simpler statistic is suggested.

Expectable error, and reliability

Usually one has to calculate reliability of the obtained results. This is an important
question if we are not sure whether the selected function shape well describes the
relation represented by the measured data.

Even if this is not the question, and we know the shape of the function to fit,
knowledge on the applicable set of parameter values may be important. Particularly
interestig is the relation of possible values of different parameters, and the shape
of level lines or surfaces. This is related to the question of if and how much are the
parameters correlated.

If the points of equal probability form a circle around the optimal parameter
vector, in case of two parameters, then the parameters are not correlated. If they
form an elongated ellips then the parameters are strongly correlated.

3.2.2 Statistical regression

Generally even the independent variables are subject to error. One cannot be sure,
for example, in the time moment when a temperature measurement was made.
Thsu both temperature and time are uncertain. At measuring vapor pressure, not
just the measure pressure but the temperature is also uncertain. All these errors
must be taken into account at fitting.

In such cases there is no reason to make distinction between independent and
dependent variables. Instead, we consider measured points in an N-dimension
space of all components, including both ’independent’ and ’dependent’ variables,
and look for a hypesurface well fitting on the points. The least squares method
means in this case means the task

(x’h] 5%] (a” bv c, ))2
min
{a,b,c,... } ;; 0-127]
fg)=0

where x are the measured points, &; ; is expectation of variable j in measurement
point ¢, and equations fi(§) =0 k = 1,2,..., M) are relations of the fitted hyper-
surface. This is a minimization task with equation type constraints.
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3.3 Initial value problems

A typical problem is modelling change of a property or some properties along a
single variable, ususally time, and the change can be modelled by a differential
equation. For example we study time dependence of temperature in a cooling
process, or concentration’s change in time in a mixed tank. Time takes place as
independent variable in dynamic balances.

The independent variable is not always time. For example, one can study
material properties along the length of an tubular reactor. But the independent
variable can be anything else, even concentration, depending on the studied physical
problem.

Such changes are modelled by ordinary differential equations (ODE-s). Their
general form is

de d?z d3z —0
TdtT de2’ dt?’"")_
where ¢ is independent variable, x is dependent variable, x(t) is the unknown func-
tion, and F(t,z,a’,2",...) is a given, known, expression. If several variables (z1,
X3, T3, etc.) depend simultaneously on the same independent variable ¢, modelled
with an ODE, and in expressions F; not only z;, =, x}, etc. dependent variables
take place by other variables and their derivatives x;, 2, 27, etc., too, then these
differential equation together form a system of ordinary differential equations.

Higher order ODEs can be transformed to first order ODE systems by intro-
2

F(t,x (3.7)

d
ducing new dependent variables. For examples, let y = d—f, z = d—t;t’ etc., then
ODE (3.7) is equivalent to
F(t,z,y,z,...)=0
do _
a Y
dy

An ODE generally has infinitely many solutions. Subsets of these solutions are
assigned by boundary conditions. For assigning particular solution of an N-th order
ODE (i.e. an system of N first order ODEs), a system of N boundary conditions
are needed.

The N boundary conditions may contain diferent values of ¢, the independent
variable. In other words, the boundary conditions may express some constraints
on the values and derivatives of the dependent variables at different ¢ values. If,
however, all boundary constraints refer to the same independent value ¢¢ then they
are called initial conditions. If these conditions are in the form of G; (¢, x, 2’,...) =
b; where values b; are given then these are called initial values, the problem itself
is known as initial value problem.
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From now on we assume that the ODE is given in explicite first oder form. In
the case of a single dependent variable this means:

dz

= f(t
TREAR
Its form in several dependent variable is:

d:ci
dt

= filt,x1,29,...) (i=1,2,...)

In this section we discuss numerical solution of ODEs.

3.3.1 Euler method

Discretize values of ¢t in equal gaps (stepsize) h (this is also called equidistant
discretization), obtaining points tg = 0, t; = h, to = 2h, etc. The respecting (but
yet unknown) function values are xo = z(to), 1 = x(t1), x2 = x(t2) etc. Expand
the unknown function z(t) around some point ¢; in the forward direction (forward
differences), and stop after the first member:

dz
Tiv1 =x; +h <E> 4 +o0 (h2)

(3

where o (h?) means that the remaining error can be approximated with a polinomial
second degree in h. Index i from here on refers to point ;.

Substitute the right hand side of the explocite ODE to the place of the deriva-
tive, to obtain Euler’s method:

Tip1 R x; + hf(ti, ;)

or, with simpler notation:
Tip1 = xi +hf;

This the simplest method with constant h stepsize. FEuler’s method approx-
imates the differential equation with an equation of finite differences.Since value
of x1 obtained in the first step is not exactly precise, it does not lie on the exact
particular solution. The next approximate function value, x5, is cmputed from this,
already impricise, point, so that its inaccuracy is higher. Numerical errors accu-
mulate step by step. There are two main consequences: (1) The numerical solution
obtained this way does not coincide to any of the particular solutions, because the
actual function value jumps to another particular solution in each step. (2) The
more steps are made, the larger the numerical error at the end of the calculation.

Euler’s method is unstable in some cases. Consider, for example, the first order

linear ODE
dr _ —B%z

i
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Its exact solution is
z(t) = —x(0)32 exp(—BQt)

where z(0) is the initial value. Each solution (the particular solution belonging to
a particular value of 2(0)) approaches 0 at infinite time. Steps of the Euler method

are
Ti41 = T — Bleh = (1 - B2h) €Z;

Since B and h are constant,
Lidn = (1 — Bzh)n T; = Anl‘i
where A = (1 — B2h). Limit of the obtained geometric series depends on A.
2
At = — if |A| < 1, and A" — oo if |[A] > 0. If b > ﬁthen1—32h< -1,

|1 — B2h| > 1, and the computed solution diverges toward infinity. In order to keep

the exponential function in its real track numerically, a step size far below % must
be applied. Applying such a small stepsize has two inconvenient consequences. A
smaller one is the long computation time it gives rise to. The larger one is the
accumulation of rounding errors this way, so that the computed function will be
impresice at higher t values.

Such an unstability can be avoided by applying backwards differences, i.e. ex-
panding the function backwards in time:

dz
Ty = Ty —h (-) +o h2
i dt i+1 ( )

By rearrangement one gets the implicite Euler method:
Tit1 ~ i + hfipa
that is, by substituting the ODE:
Ti41 = Ty — hBQJLH_l
and finally:
T
1+ hB?
This is stable irrespectively to h because 1 + hB? > 1.

Tiy1 =

3.3.2 Stiff equations

There are initial value problems that either need very small step size to calculate
with acceptable precision or even impossible to do it with any small stepsize. This
stifness is an inherent property of such problems.
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Example 1: Find solution of

d%z
with initial values
z(0) =1
dx
— (0) = —10
7 0

and increasing t. The exact general solution is
x(t) = Aexp(—10t) + Bexp(10¢t)

where A and B are integrating constants depending on the particular initial values.
By substitution one gets A =1, B = 0, i.e. the exact particular solution is:

x(t) = exp(—10t)

Value of the solution function a 0 is 1, and is exponentially attenuating toward
0 with increasing t. When the ODE is solved numerically, however, there is always
some small, any small, rounding error. This manifests in some small but positive
¢ value of B:
z(t) = exp(—10t) 4 & exp(10¢)

Any small ¢ is, the second member dominates at higher ¢ values, and the nu-
merial solution turns upward.
Example 2: Find solution of the first order linear ODE system

dx

— = 998 1998
1 T+ Y
dy

— = —999x — 1999
at v Y

with initial values 2(0) =1 and y(0) = 0. The exact solution is

iL'(t) _ 26715 _ 67100015

y(t) _ —€7t 4 67100015

The coefficient matrix is weakly conditioned (its determinant is near zero),
and hence the solutions contains exponents different with magnitudes. The same
consequence occurs as in the first example. To obtain a numerically stable solution,
the step size must be far lower than 0.001. Otherwise the solution switches to and
from different particulat solutions rapsodically.

In some cases stiffness can be overcome by applying well selected varable trans-

1
formation. By substituting x = — in Examle 1, the ODE for y is already not stiff.
Y
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One first solve this equation numerically, and then transforms the solution batck
to x.

Unstability similar to that in Example 2 occurs in modelling dynamics of coun-
tercurrent multistage separation systems (distillation, absorption) because dynam-
ics of vapor velocity with pressure, liquid flow rate with hold-ups, and finally con-
centration changes are characterized with time constants different with magnitudes.
Step size of dynamic simulation should be selected to the fastest process (pressure
and vapor flow, some seconds) but then very long simulation is needed to obtain a
picture on concentraion changes (hours). Thus, their dynamic modelling is rather
difficult although their control can be detached because of the same reason.

3.3.3 Runge-Kutta methods

Accuracy, and thus step lentght can be increased by expanding the series to higher
order.

Runge-Kutta methods are such higher order approximations, and can be con-
sidered as improvements of the Euler method. According to the Euler method,
change of the unknown function x during a step h is determined by the slope at
the beginning of the interval f(¢;—1), thought the slope can be rather different at
the end of the intervalf(t;—1 + h), i.e. f(¢;). Naturally, there is an integral average
slope f that would result in the exact value:

z(t+h) = z(t) + hf

The Runge-Kutta methods differ from each other in how this average slope f is
approximated. Fuler method approximates it with the slope at the beginning of
the interval.

The simplest Runge-Kutta method is the following. First approximate the
change of x along the interval of lengt h with the slope computed at the beginning
of the interval (this is k = f(¢,z(¢t)h)), and make a half-step along the straight line
connecting point ¢, z(t) to point ¢ + h,x(t) + k) to get to point (t + h/2,x(t) +
k/2). Then approximate the step with the slope at this half-step point. This is
conventionally denoted as

ki = hf(ti,z;)

1 1
ke = hf(ti + h, @i + ki)
2 2
Tiy1 = x; + ko

Hanbbooks list several Runge-Kutta methods. A preferable one is the so-called
fourth-order RK method because of its symmetric nature that makes it almost fifth
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order in practice:

3.4

kl - h.f(tz)x’t)
h kq
k2—hf(tz+§,$z+?
h ko
k3—h.f(tz+§;$z+?
k4 th(ti-l—h,l‘i—i-kg)
k k k k
SR

)
)

Boundary value problems

If there are several independent variables in a differential equation and the bound-
ary conditions are not related to just a single point but to more ponts in the space
of the independent variables the we speak about a boundary value problem.

Practical examples.

1

5

Distribution of concentration and temperature is looked for along a cross
section, situated some distance from the feed point, of a tubular reactor filled
with catalyst on solid carrier, given either wall temperature or heating power
or insulation. At the boundary of the cross setion the consditions may be
taken symmetric. Frequently even the inside is symmetric in a cylindrical
device, and then the problem becomes univariate, alond radius. In case of
structured packing, and diffusion and heat conductivity changes according to
place and direction, then the problem can be rather difficult.

Distributions are to be computed along a cross section of a tube in a multitube
reactor. In this case the boundary conditions are not symmetric at the tubes
situated near the outer part of the bundle.

Temperature distribution is looked for in a shell-and-tube heat exchanger.

Modelling flam, furnaces, exoterm rections in three dimension space with
asymmetric boundaries, gas flow patterns etc.

Modelling trickling or diffusion of contamination in soild and air.

Such problems are discussed in conventional chameical engineering with sim-
plified models applying the principle of similarity and analogy (Reynolds, Nusselt,
Prandtl, Peclet, Damkoehler etc. numbers). More precise modelling is possible
with numerical solution of differential equations, and sometimes they are really
needed.

These problems are modelled with partial differential equations. Here we will
denote the independent variables with x, or their array with x. A single dependent



3.4. Boundary value problems 139

variable is considered, for simplicity, denoted by U. Here U denotes the (unknown)
exact solution, whereas u will denote its computed approximation.

The domain of independent variables can be of any shape. For example, if there
are two intependent variables then we may look for an unknown function over a
rectangle, or over a full circle area, or over just the contour line of the circle area, or
over a non-regural polynom, etc. This domain will be denoted here by 2. In case
of several variables, the boundary of domain 2 is not a set of discrete points but
an extended shape: a line in the plain, a surface in the three-dimension space, etc.
Boundary conditions are given over this boundary. Hence boundary conditions can
be differential equations as well as ordinary equations.

3.4.1 Target shooting

The simplest boundary value problem conceivable is a second order ordinary dif-
ferential equation ,

d<U dU

o - @l )
to be solved over interval a < z < b, with boundary conditions U(a) = U, and
U(b) = Uy. Expression f(x,U,U’) is known, and the unknown function U(z) is
looked for.

Its simplest numeric solution method is target shooting. If we new the derivative
U’(a) instead of Uy then we could find u(z) numerically with a method of section
3.3 solving the initial value problem obtained. Since this initial value of U’ is
not known, we estimate it: U’ = V, and solve the initial value problem with this
estimate. As a result, we obtain numerically a function u(x), and its final value
u(b) denoted with up. This wuy is a function of the initial value of the derivative
U’ ~ V; one can denote this function with u, (V).

If V is a good estimate of U’(a) then the computed value equals the specified
boundary value: up(V) & Uy. If, by chance, the estimate is precise then V = U’(a),
and up(V) = Up. That is, the problem can be transformed to solving an equation
of form uy(V') = Uy, and we can apply the methods discussed in section 3.1.1.

3.4.2 Finite differences

Not only function U(x) but its derivatives are also unknown. In method of fi-
nite diferences the independent variable x is discretized and U(z) is calculated in
discrete x; points only. These values are denoted by u;, and the derivatives are es-
timated with whem. The so estimated derivatives are substituted to the differential
equation to obtain an ordinary equation system solvable for wu;.
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Single variable finite differences

Forward differences are obtained on an interval [z;, x;+1] of length h by expand-
ing the unknown function from one end:

U ,
Uswr=U;+h (a)i—i-ﬁ(h )

Hence approximation of the first derivative is

(dU> Ui = U

a h + O(h)

i.e.

ry _AY  wn-w
dz ), h —  h

Higher order derivatives are approximated in the same way:

(d2U> LAY AF =AY i~ 2ui

dz2 ), K2 h2 h2
d3U - Ag?)) _ Agi)l - AEQ) _ Uj+3 — 3’U~L‘+2 + 3’U,i+1 — U;
da3 /, h3 h3 h3

sth.

Central differences are obtained on an interval [z;, z;+1] of length h by
expanding the unknown function from the midpoint to both directions:

h (AU h)? [d2U
UH%—UH—(—) ) <—) To(h?)

2 \ dz 8 dz?
R [(AU\ | (=h)? (42U ,
Ui_%iUz 2(dx>i+ 8 <da:2 i+0(h)

Difference of the two equations is:
Uiy —Uimy = h <a)z +o(h”)
where o(h?) is an expression of degree of error. Hence

dy _ Uiy ~Uiy |

Error of the forward differences scheeme is of first degree, whereas that of the central
differences is of second degree. Applying central differences is prefereable because
on can reach higher occuracy with the same stepsize (mesh or grid spacing).
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Central differences are technically easier to work with if mesh size 2h is applied,
then no half indexes are used:

du)  wipr — Ui
dz /, N 2h

(d2u> . Ujt2 — 2ui —+ U;—2
i

da? 4h2
dg_u _ Uit — 3Uip1 + 3Ui—1 — Ui-3
da? /), 8h?

Multivariate finite differences

Pure and mixed partial derivatives are to be approximated. The simplest case is
a right angle grid or mesh parallel with the axes of the co-ordinate system, and
points to be evaluated are allocated at the eintersection point of the grid. Equal
mesh size h in each direction makes the problem easiest to deal with. If possibel,
central differences are applied.

Firs, second, third etc. derivatives according to either variable are formed in
the same way as in the case of a single variable. For example, second derivative
according to the first variable is approximated as

2
(3 U> _ Wigoj — 2Uij t+Uig,
ij

o3 4h?

Mixed partial derivatives can be formed by first differentiating according to one
variable, and the according to the other one. For example:

2
0%u Wi 11— U=, — U1 Ui—1 51
8x18x2 i 4h2

More complex expressions can be made in the same way. For example, Laplacian
operator is approximated as

2 2
V2, = ou OPuN Uit Ui i1 Uiy — A
! 0t ), ; 073 ), ; 4h?

or the same rotated with 45 degrees:

Uit 1,j4+1 + Wim1,j41 F Uic1,j—1 + Wig1,5—1 — U 5
8h?2

2
Vi, =

Formulas can be derived for derivatives if different mesh sizes are applied in
different directions, in slanted (not right-angle) systems, or even in curved sys-
tems. Ready made approximating formulas are provided in handbooks for 2 and
3-dimension systems.
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The method of finite differences

By substituting the formulas of finite differences into the differential equation(s)

one obtains ordinary equations for the unknown variables u; or w;j ... Linear

differential equations give rise to a linear equation system that can easily be solved.
As an example, solve ordinary differential equation

dU

e +2U =1
over domain Q = {z|0 < 2 < 1} with condition U(0) = 1. This is an initial value
problem but method of finite differences can be applied here as well. (We solve this
very simple problem so that it is easy to follow up.)

Interval [0, 1] is subdivided to 4, equal size h = 0.25, parts, and look for the
solutions in the grid points only, i.e. at z; = 0.25, 5 = 0.5, z3 = 0.75, and x4 = 1.
Generally, method of finite differences approximates the solution in finite number
of discrete points only. The unknown function must afterward be interpolated
between the calculated points.

Function value at zg = 0 is already given by the boundary condition. Applying
forward differences and substituting them to the differential equation leads to:

% Fou =1
“40;;‘3 L ous =1

This is a linear equation system. Taking into account ug = 1, its matrix form
is:

4 0 00 uUq 3
—-24 00 up | |1
0 —240 uz |~ |1
0 0 —24 Uy 1
Its solution is
(ul,u2,u;3,U4): <§ § 2 H)
4’8716 32

Non-linear differential equation, or a differential equation with coefficients
depending on U and/or its derivatives, give rise to non-linear equation system on
u. Its solution is more difficult but possible.

The method is not so simple if a derivative is to be calculated at the boundary
of 2 because in that case usually points outside the domain are also to be applied.

Because of the boundary conditions, grid points should be located along the
boundary. In case of two or more independent variables, the boundary can be a



3.4. Boundary value problems 143

rather complex shape. If 2 is as simple as a rectangle or a circle then this is not a
difficulty, but setting points in the boundary is not always so simple, and sometimes
it is even impossible, in case of strangely shaped {2 domains. This difficulty comes
together with the method of finite differences.

3.4.3 Weighted residues

In contrast to the finite differences, the method of weighted residues finds an ap-
proximate solution all aver the domain, not just in grid points. For this aim, the
unknown function U(z) is approximated as an expansion in the space of some
(preferable complete and orthonormal) function series of so-called basis functions
wi(x) with unknown coefficients «;:

Uz) = Zam(w)

This expansion with proper coefficients «; exactly satisfies the differenctial equa-
tion, thus the task is to find the coefficients.

In practive one stops after a finite steps of expansion, and an approximate
solution w is looked for:

N
u(@) =Y aips()
i=1
Denote a differential equatio (system) generally as D [U(x)] = 0 where D[] is
a so-called differential operator. The exact solution U(x) satisfies the differential
equation in all points of €2, but u(z) does not:

Z ai@i(w)] =0
i=1

D

N
D [Z aiapi(w)] #0
i=1

Method of weighted residues looks for such coefficients «; that makes an average
of the errors over € zero. For this aim one has to select N different weitght
functions w;(x) (j = 1,2,...,N) arbitrarily, and integrate over the domain with
these weights:

N
/D [ZO@Q&%(%)] wj(a:)da::O (jZl,Z,...,N)
Q i=1

This is a system of N ordinary quations with N unknown coefficients «;.
Consider, for example:

2 2
U(x)d U (dU d

2
W a) +Sln($)@ =0
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and approximate the solution U(x) of this non-linear ordinary differential equation
N
with u(z) = > a;;(x) where functions ¢;(z) are known. Select some also known

7
weight functions w;(x) ((j = 1,2,...,N)), express the average error with weight
function j, and equal it to zero:

iiaiak/w(aﬁ) (jxf + 3 )wj(x)da:Jr

i=1 k=1 Q

N
+Zaz/sm vi(z)wj(z)dz =0

The integrals in this equation can be computed because all the functions in them
are known. Thus a non-linear ordinary equation system is obtained with unknowns
(67

In case of a linear differential equation the ordinaty equations obtained this
way are linear in unknowns «;, and the system is easy to solve. Denote a linear
differential operator with L [.], the differential equation with L[U(z)] = p(«x), where
p(z) is a known function. Then the ’average error is null’ equation is:

Jr fjaisoxw)] w@)iz = [ ()

Q Q

Sequence of integration and summation can be swapped, and the coefficients lifted
outside the integral, we obtain an equation system linear in «;

N
Zaj,iai:bj (j=1,2,...,N)

where

Gy = / L i ()] w; () dc

Q

b = [ pl@yw,(@)de
/

These integrals do not contain any unknown, they can be calculated in advance
either analytically or numerically.

The weight functions are usually again selected as members of some series. Most
known selections are the following three:
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Method of point collocations This is the simplest method, and no integration
is practically needed with it. One has to assign in the domain N different points
xj, and select Dirac delta functions around these points as weight functions:

wj(z) =6z — x;)

(These functions can be defined several ways, one of them is limits of the normal
distribution density functions with expectations «; as their variance goes to 0.)
For any continuous function f(x):

/mf@ﬁ@—wﬂm—f@ﬂ

therefore, instead of integration, one can simply substitute «; to the function:

[ L@@~ 2))de = Lu(a)

Q

Method of moments In this method the weight functions are

[wj(x)] = 27~

i.e. the members of the series 1, z, 22, 23, ...

Method of Galerkin Galerkin suggested to select just the basis functions ¢; ()
as weight functions:

wj(®) = ¢;(x)

Theoretical considerations show that this can be an efficient selection.

Example
For simplicity and transparency, here we solve the ordinary and linear equation
d2U
dx?

over domain 2 = {0 < z < 1} with boundary conditions U(0) = 0 and U(1) = 0.
Here, with our notation,

+U=—x

2
L[U] = % +U
p(z) = —x
The exact solution is
Ulx) = sin(z) -
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For numerical sulution, let the basis functions be

pilr) =2 —zM =2'1-2) (=1,2,...) (3.9)
because these satify the boundary conditions, and stop after two members:
o1(r) =1 — 22
pa(w) = 2 — o

u(x) = a1p1(x) + azpa(w)
Effect of the linear differential operator on the basis functions is:
L{pi(2)] = ~2+ 2 — 2
L[p2(2)] =2 — 62 + 22 — 2®

Solution with point collocation. We select arbitrarily two points. Let them

be x1 = 0.25 and z2 = 0.5. With these values we get:

ai1=—2+0.25—-0.25% [ a1 =2 —60.25+ 0.25% — 0.253
a2 = —2+0.5—0.52 a9 = 2—6*05+052 —0.53
by = —0.25 by = —0.5

_% 2_5 a) _ (-
T1 78/ \*2 B
The solution in concise form is:

u(z) =

That is

DO s [ =

z(1 — x)(42 + 40x)
217

Solution with moments. The weight functions are:
(@) =1, waz) =z

Elements of the linear system are:

1 1
aa=[(-2+z—2%)*1ldr | a1 =[(2-62+2%—2%)*1da
d 0
1 I
mpe=[(-2+z—2*)*xzdz |ae=[(2-6z+2%—2%)*xz da
0 0
L 1
b= [(-2)*1dz by = [(—z)*x dz
0 0

The integrals can be computed analytically in this case. Results:
11 _ 11 1
~u_u o) (-1
k) (o) -(21)
( 12 20/ \92 3

(1 —x)(122 + 110z)
649

Solution in concise form:

u(x) =
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Solution with method of Galerkin. Weight functions:
wl(a:)zx—a:Q, wg(m)sz—x3

Elements of the linear system:

a1=[(-2+z—2?) (z—2?) dz | a1 =[(2-6x+22—2%) (x—2?) dz

( 2+x—x)(x2—x3) dzx

are = (2 =62+ 2% —2?) (2% —2°) da

/—\ O%HO%H

]
J
(=

—z) (z —2?) da z) (2% —2%) da

O%»—A

=

The integrals can be computed analytically in this case. Results:

_3 _3 _ 1
(o) (e)-(2)
~20 T 105 @2 —20
Solution in concise form:

x2(1 —x)(71 + 63z)

we) = 369

Comparison of the results. The results calculated in points x = 0.25, x = 0.5,
and z = 0.75 are compared:

0.25 0.5 0.75
Exact U 0.044014 | 0.06975 | 0.06006

Collocation | 0.044931 | 0.07143 | 0.06221
Moments 0.043191 | 0.06818 | 0.05908
Galerkin 0.044080 | 0.06944 | 0.06009

Dealing with the boundary conditions

There are two different techniques for dealing with boundary conditions.

Proper basis functions. According to this technique, one has to select basis
functions that all satisfy the boundary conditions. This one we applied in the
above example. Unfortunately, finding proper basis functions is not an easy task,
and is not even always possible.

Involving the boundary conditions in the equation system. This technique looks
for such coefficients a; that not only average error of the main differential equations
D[U(z)] = 0 makes zero over {2 but the average error of that one plus those of the
boundary conditions P1[U(x)] = 0, P2[U(x)] = 0 etc. over the boundary §Q2:

/D [i::aigai(a:) w;(x dw+Z/Pk Zompz ] (x)de =0

Q k sa
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(j=1,2,...,N)

Here any basis functions can be selected but even the boundary conditions will
not exactly satisfied.

3.4.4 Finite elements

Method of finite elements is a version of weighted residues, especially with Galerkin,
but applied on such problems that are defined over highly involved domains and
material properties. For example, heat loss and temperature distribution in a
reactor under pressure is to be computed point by point. The vessel stands on
three legs down from an oval bottom. The cover is again an oval body, fixed to
the vessel with flange and bolts. There is a stirrer of anchor type inside the vessel.
There are tubes comming from the top down into the liquid in the vessel. There
are even more sensors, a window, insulation, etc. What kind of basis function can
be applied to model the whole body? How can we take into account of the phases,
different materials inside the domain?

For this aim, we subdivide domain 2 to many small, and regularly shaped,
subdomains interfacing at the borders of the subdomains only: sides, edges, and
vertices. These subdomains are called finite elements.

One basis function is constructed to each vertex in such a way that its value is
1 in that vertex, is zero at the other vertices of the finite elements neighboring this
vertex, and Is zero over any other finite element.

The integrals occuring in the method of weighted residues can be decomposed
to sub-integrals over the finite elements. Since each basis function is non-zero over
a very few elements only (2 in one-dimension, 4 in 2 dimensions, 8 in 3 dimensions),
one does not need integrate over the whole 2 domain. Even integral of a single
basis function can be decomposed as a sum of integrals over its few elements.

Moreover, since these functions have short range, low degree polinomials can be
used as basis functions. This low degree polinomial over a single finite element is
called shape function. Over each finite element there are as many shape functions
as the number of vertices of the element. Each has value 1 in one of the vertices
and 0 in others; each has 1 in a different vertex of that element.

How it is done is illustrated on a one-dimension case. Here an interval is sub-
divided into smaller intervals, and we apply (for simplicity) linear shape functions,
according to Fig. 3.9.

Shape functions generally are curved functions, and are selected to satisfy some
smoothness conditions. Linear element provide continuity but they are not differ-
entiable at the boundaries of the elements. Second degree functions can be applied
to constuate solutions that are differentiable at least once, etc.

This method usually results in a linear equation system of gigantic size, but its
coefficient matrix is sparse, and usually of special pattern that make the solution
easier.
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