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9.2.  Residence time distribution measurement in chambered re-

actor and packed column 

9.2.1. Introduction 

In the equipment used by the chemical industry, materials are subjected to certain 

effects (temperature, pressure, physical and chemical effects). The duration of the-

se effects in the various processes is very important. In many cases, good mixing 

can be detrimental, e.g. during the sterilization of milk, where the temperature 

must be sufficiently high to kill spores, but the milk can only be subjected to this 

temperature for a short time to avoid loss of valuable components (vitamins). 

Thus, rapid heating, short-time high temperature sterilization and rapid cooling are 

required. 

If we were to carry out sterilization in a continuous, stirred tank, results would 

be unsatisfactory. Good mixing would cause part of the liquid to exit right away, 

i.e. without sterilization, while other parts would remain subjected to high temper-

atures in the equipment longer than desired, damaging the vitamins. Therefore, 

mixed tanks cannot be used in continuous mode, if the material can only reside in 

the equipment for a definite period of time.  

In batch processes, this problem does not exist, because all particles have iden-

tical residence time. 

In most cases, a uniform residence time would be desirable, when every parti-

cle or volume element in the material would traverse the reactor with equal speed 

on equally long paths (as is the case with plug flow) and fluid elements following 

each other would not mix. This ideal flow scenario is called perfect displace-

ment.  

9.2.2. Theoretical background 

Mean residence time 

In a steady-state equipment, mean residence time can be calculated by the follow-

ing formula: 

t
m

m



 (9.2-1) 

where m is the mass of material in the equipment (kg), m  is the mass of material 

added to the reactor in a given time (mass flow: kg/s). If the density of the materi-

al does not change in the equipment, then based on the above formula: 

t
V

V


  (9.2-2) 

where V is the volume of fluid in the equipment (m
3
), V  is the volumetric flow 

(m
3
/s). 
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In a continuous equipment, particles of the feed material can have extremely 

different residence times, which vary randomly for a given particle. We can only 

state the probability of the residence time  t  being between certain limits. 

Aim of residence time distribution measurements 

The aim is to describe real flow, macroscopic mixing, heat transfer and mass 

transfer in chemical industry equipment with a mathematical model. The mathe-

matical model allow us to calculate the separation achievable in mass transfer 

equipment or the conversion in reactors. If the effects of operating parameters on 

the residence time distribution and the mathematical model are known, optimal 

operating conditions can be determined, and based on the mathematical model the 

dynamic behavior of the equipment linked to a controller can be studied. 

It is very important that the chosen model contain a mathematical description 

of all significant hydrodynamic processes, while at the same time having a simple 

equation and few parameters to be determined empirically. 

If the equipment is not functioning properly, the separation is poor or conver-

sion is low, residence time distribution can help determine the cause of inadequate 

operation. Residence time distribution can detect channel formation (short-

circuit), stagnant regions mixing poorly with the main flow and internal recircula-

tion. 

Residence time distribution is described by the density function E(t) and the 

distribution function F(t). 

Residence time distribution density function E(t)  

E(t) dt is equal to the fraction of the mass flow exiting the equipment with resi-

dence time between t and  t + dt (Figure 9.2-1a). The integral of the density func-

tion from  0 to  is one. 







0

1)( dttE  (9.2-3) 

It follows from the definition of the function E(t) that it has a dimension of 1/time

. Multiplying the E(t) function by the mean residence time yields the dimension-

less form: 

E( ) = )(tEt  (9.2-4) 

where  = t t  is the reduced time, relative to the mean residence time. 

Residence time distribution function F(t) 

The value of the distribution function F(t) at time t gives the fraction of the exit-

ing mass flow that remained in the equipment for a time of t or shorter (Figure 

9.2-1b). 
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Figure 9.2-1. Residence time distribution functions:  a) density; b) distribution 

The distribution function is the integral of the density function from 0 to t. 
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)()(  (9.2-5) 

It the follows that the distribution function grows monotonously with t and tends 

to a limit of one as t  . 

Measuring residence time distribution 

We will measure the residence time distribution by tracer response analysis. The 

must be chosen to be a compound that satisfies the following criteria: dissolves 

only in the phase being examined, does not disturb the flow, passes through the 

system unchanged (i.e. does not react with material in the equipment, does not be-

come immobilized), its hydrodynamic behavior is similar to the particles of the 

surrounding phase and its concentration is easily measurable. 

The basic concept of residence time distribution methods is creating a concen-

tration disturbance at the inlet of a steady-state equipment and measuring the re-

sponse signal in the effluent. We only need to consider convective mass transport 

in the inlet and outlet piping, because the flow rates here are significantly larger 

than those inside the reactor. This means that no material exits (or is reintroduced 

into) the equipment via diffusion or turbulent mixing; thus the system is closed 

with respect to mixing. 

In a pulse experiment, n0 (mol) amount of tracer is introduced into the equip-

ment over a period of time much shorter than the mean residence time, and the 

tracer concentration c(t) (mol/m
3
) is measured in the effluent as a function of time. 
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The fraction of tracer leaving the reactor between times t and t + dt is equal to 

 
0

ndttcV . 

It follows from the above definition of the residence time distribution density 

function that: 

 
 

0
n

dttcV
dttE


  (9.2-6) 

The amount of tracer introduced needs not be measured, as it can be calculated 

from the c(t) concentration–time curve:  

 





0

0
dttcVn   (9.2-7) 

Substituting this into (9.2-6) yields: 

 
 

 




0

dttc

tc
tE  (9.2-8) 

Evaluating residence time distribution density curves 

The parameters Pi of the mathematical model are determined by fitting the calcu-

lated pulse response curve to the experimentally determined curve. The best fit is 

obtained when the sum of the squared differences between the calculated and ex-

perimentally determined points is minimal. 

Method of moments 

The moment of methods is a faster method for evaluating pulse response curves. 

The n
th

 initial moment of the residence time distribution density function about the 

origin (t = 0) is defined as 

   dttEtM
n

tn 





0

 (9.2-9) 

The index t of Mn indicates that its dimension is [timen]. The first initial moment 

(M1)t  is the mean value of the distribution. In a closed system with respect to mix-

ing, (M1)t equals the mean residence time. The moment about the mean or center 

of the distribution is called the central moment. 

     dttEtt
n

tn 





0

  (9.2-10) 
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During the calculations, it is advantageous to use dimensionless moments. Dimen-

sionless moments are defined as: 

 

 

 

 
n

tn

nn

tn

n

t
és

t

M
M


   (9.2-11) 

The width of the density function, i.e. the deviation of residence times around the 

mean can be characterized by the value of 2. Thus, the second central moment is 

also called the variance, denoted by 2
. 

The basic concept of the moment of methods is equating the moments Mn,exp 

obtained from the measured residence time distribution density curve by numeri-

cal integration according to equation (9.2-9) or (9.2-10) with the corresponding 

theoretical moments Mn(Pi )model obtained from the model. 

Mn,mért = Mn(Pi )model (9.2-12) 

Solving the equations yields the values of parameters Pi. 

Disadvantages of pulse experiments: The end of the pulse response curve can-

not be measured precisely, only with large relative error. Due to the factor t
n  the-

se errors become especially prevalent for higher moments. Also, it is impossible to 

attain the upper limit of integration (t = ). 

Because of the aforementioned errors, the method of moments cannot be used 

to determine whether the chosen model provides an adequate description of the 

residence time distribution. This can only be determined from comparing the E(t) 

curves obtained from measurements with those calculated with parameters ob-

tained by the method of moments. If the parameters are independent, then we need 

to calculate n moments to obtain the values of n parameters. Since moments of 

order higher than two can only be calculated with increasing imprecision, the 

moment of methods is mainly used with simple two-parameter models. 

Ideal stirred tank 

A tank is considered to be ideally stirred if the material fed into it is dispersed uni-

formly in its entire volume over a period of time much shorter than the mean resi-

dence time. In practice, if the stirred material is not too viscous, this requirement 

can easily be fulfilled. In ideal stirring, the concentration in the tank is uniform 

and equal to that of the outlet stream. 

Instationary mass balance for the tracer: 

 
dt

dc
VccV

ki

kibe
  (9.2-13) 
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The residence time distribution density function can be derived as: 

 
 

 tt
tdt

tdF
tE /exp

1
  (9.2-14) 

Residence time distribution for cascade of tanks (cell model) 

A system of serially coupled ideally stirred tanks of equal volume (the so-called 

cell or cascade model) was the first model used to mathematically describe the 

residence time distribution. 

 
Figure 9.2-2. Residence time distribution density function for a cascade of N tanks 

 
Figure 9.2-3. Residence time distribution function for a system of serially coupled 

tanks 
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The dimensionless residence time distribution density function of the cell model: 

 
 

 
 


 N

N

NN
E

N








exp
!1

1

 (9.2-15) 

where N is the number of ideally stirred tanks (cells),   t t  is the reduced time 

relative to the mean residence time, t  is the mean residence time for the whole 

system. 

The dimensionless variance: 


2

1 / N  (9.2-16) 

The cell model can be used for any multi-stage equipment where adequate 

structural design prevents mixing between the stages: e.g. the residence time dis-

tribution in a concurrent bubbling tower divided into stages by perforated plates 

can be adequately described using this model. 

When calculating the residence time distribution density function, if the cell 

number (N) calculated from  2  is not a whole number, the -function must be 

substituted into the denominator of equation (9.2-16) instead of (N – 1)! (-

model). 

   






0

1
exp dxxxn

n  (9.2-17) 

if N is a positive whole number, (N) = (N – 1)! 

Recirculation model 

This model considers the equipment as consisting of N ideally stirred cells of 

equal volume. The strength of recirculation between adjacent cells is described by 

the recirculation parameter :  =
rec

V  /V , the quotient of the recirculation stream 

(
rec

V ) and the feed stream (V ). The model is shown schematically in the follow-

ing figure. 

 

Figure 9.2-4. Recirculation model 

Equation of the residence time distribution density function [1]: 



 242 
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where 

 A
z

j

j j

j

 




1
1

1

2
sin 

 

  z N a
j j
   1 2 1 cos  

a 










1
1 2




 


j
 is the j

th
 root of the following transcendental equation: 

 





j

j

j

N arctg
a

j 














 1 2

sin

cos
 

Variance is given by: 
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 (9.2-19) 

Diffusion model 

Instationary mass balance of the tracer in a volume element of the equipment [2]: 

)graddiv()div(
ii

i
cDc

t

c





v  (9.2-20) 

where D is the dispersion (also known as macroscopic mixing or turbulent diffu-

sion) factor (m
2
/s), v is the velocity vector (m/s). 

Changes in the concentration in a unit period of time are due to convection  

div(vci), or diffusion div(Dgrad ci). Equation (9.2-20) is the basic formula of 

the diffusion model (also known as the dispersion model). 

Let us apply the above equation to a cylindrical equipment of large diameter. 
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   v  (9.2-21)  

where  D
r a d

 and D
ax

  are the radial and axial mixing factors, r is the radial space 

coordinate (m), l  is the length coordinate (m), v is the velocity of the axial plug 

flow. 
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 The above equation is valid if the flow inside the equipment is turbulent (in 

this case the axial velocity profile of the fluid is very close to that in plug 

flow),  

 radial and axial mixing factors are constant, 

 radial velocity is zero. 

In a cylindrical pipe of small diameter, if the flow is turbulent, radial mixing caus-

es the concentration to be uniform in a given cross-section of the equipment. This 

means that equation (9.2-21) is further simplified: 

D
c

l

c

l

c

t
ax













2

2
 v  (9.2-22) 

This is the transport equation of the one-dimensional diffusion model. 

Let us multiply both sides of equation (9.2-22) by the mean residence time 

( t L v ) and divide by the inlet concentration 
in

c  of the tracer (the input signal 

amplitude). 

D

L

C

z

C

z

Cax

v













2

2
   (9.2-23) 

where L is the length of the equipment (m), z l L  is the dimensionless space 

coordinate, C c c
be

 . The dimensionless group  vL D
ax  is referred to in litera-

ture as the PECLET number (Pe). For perfect macroscopic mixing D L
ax
v = , for 

perfect displacement D L
ax
v  = 0. 

If the diameter of the inlet and outlet piping is significantly smaller than the diam-

eter of the equipment, then mixing (dispersion) will only occur in the equipment 

and we can assume ideal displacement in the piping (closed system with respect to 

mixing). Accordingly, the boundary conditions for the beginning and end of the 

equipment are: 

v vc c D
c

ll ax

l

0 0

0

 







 and 





c

l
l L

 0  (9.2-24) 

The LANGMUIRDANCKWERTS boundary conditions for the beginning of the 

equipment only hold true for mixed systems (e.g. mechanically stirred towers). 

This boundary condition states that a discontinuity in concentration exists at z = 0 

even in steady state. 
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The one-dimensional diffusion model was used successfully to describe the res-

idence time distribution of various pieces of continuous equipment in chemical 

engineering (packed absorber, liquid-liquid and solid-liquid extractor, bubbling 

column reactor, ball mill, etc.). 

 

Figure 9.2-5. Residence time distribution density function of the one-dimensional 

diffusion model, if the system is closed at both ends with respect to mixing 

The residence time distribution density function of the one-dimensional diffu-

sion model closed at both ends with respect to mixing [3]: 
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where  
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9.2.3. Description and operation of the equipment 

Figure 9.2-6. shows the operational scheme of the experimental equipment. Dis-

tilled water is fed into the equipment from a feed tank on the upper level. Volu-

metric flow rate is measured by a rotameter. Depending on the valve settings, ei-

ther the packed column or the chambered reactor can be operated.  

The chamber reactor is a steel tube with a diameter of 58,5 mm and a length 

of 200 mm, divided into 5 chambers (cells) of equal volume by metallic rings on 

spacer rods. The internal diameter of the stationary rings is 18,5 mm. Chamber 

mixing is provided by flat mixing discs 40 mm in diameter, mounted on an axle 

running parallel to the reactor tube. Mixing speed can be continuously adjusted in 

the interval 0-1200 1/min. Liquid is fed into the reactor at the bottom and exits at 

the top. Tracer (sodium chloride solution, concentration 300 g/l) is introduced into 

the reactor through the syringe at the bottom of the reactor. A pair of electrodes 

mounted at the top of the reactor measure conductivity, which is proportional to 

the concentration. The reactor is encased by a thermostating jacket. 

The packed column is a glass tube with a diameter of 35 mm, and a length of 

910 mm. The packing (spheres, Raschig-rings etc.) are changed systematically. In 

the column, liquid flows from the bottom to the top. The salt solution is intro-

duced via a syringe. The response signal is measured by a conductometric cell at 

the top of the column.  

The built-in measurement cells are connected to a conductometer displaying 

the conductivity, which is proportional to the concentration. The voltage output 

signal of the conductometer is sent through an interface to a computerized meas-

urement and data collection system. From the start of the measurement, the com-

puter measures the output signal of the conductometer at user-specified intervals, 

and after analog/digital signal conversion displays it in the range of 0 to 5. At the 
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end of the measurement, the data can be saved in a file.  

Measurement instructions 

Fill the feed tank with distilled water. Start liquid feed. It is recommended to wash 

the equipment with distilled water before beginning the experiment. Set the volu-

metric flow rate (5-15 l/h) and the rotation speed of the chamber reactor mixer 

(500-900 1/min) specified by the instructor. Inject the tracer and at the same time, 

start the data collection. Measurement and data acquisition is done by the program 

LABDAS. A detailed instruction manual is available next to the computer. Please 

carry out the experiment according to the instructions. If the response signal ap-

proaches the base signal (the first number on the screen at the beginning of the 

measurement) stop the measurement and, after entering the other parameters, save 

the data. The instructor specifies the number of measurements to be performed.  

9.2.4. Evaluating the results 

The measured pulse response can be evaluated with the residence time distribution 

program TIE. You will find a detailed instruction manual for the program next to 

the computer.  

Select your measurements from the folder “adatfile”. Evaluate every data series 

using the method of moments. Using formulas (9.2-16), (9.2-19) and (9.2-26) the 

program calculates the effective cell number (N), the recirculation coefficient (g) 

and the Peclet number (Pe). The recirculation coefficient is not applicable to the 

packed column. Compare the density function (E()) obtained from the measured 

pulse response with the theoretical curves from the mixing models (-model, re-

circulation model, diffusion model). Use the parameters obtained from the method 

of methods (N, g, Pe) for the calculations. The graph will show the sum of the 

squared differences between the measured and calculated curves (dimensionless!). 

Based on these values, choose the mathematical model that adequately describes 

the macroscopic mixing inside the equipment.  

Recommended complimentary assignment: For the model that adequately de-

scribes the mixing, find the parameter of the curve that best approximates the res-

idence time distribution by minimizing the sum of the squared differences be-

tween the experimental and calculated curves.  
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Figure 9.2-6. Experimental equipment for determining residence time distribution 
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Measurement record 

Equipment: chamber reactor/packed column 

Mixer speed:   1/min 

Feed volumetric flow rate:  dm
3
/h 

Mean residence time:  s 

Model Parameter Sum of squared differences 

-model N:  

Recirculation g:  

Diffusion Pe:  

Remarks: 
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